
 Lukky Hariyanto, et. al.: Procedural Map Generation… (April 2024)

VOLUME 06, No 01, 2024 DOI: 10.52985/insyst.v6i1.353 24

Procedural Map Generation for 'Splatted':
Enhancing Player Experience through
Genetic Algorithms and AI Finite State
Machines in a Snowball Throwing Game

Lukky Hariyanto1 and Hendrawan Armanto1
1Informatics Department, Faculty of Science and Technology, Institut Sains dan Teknologi Terpadu Surabaya,
Surabaya, Indonesia

Corresponding author: Lukky Hariyanto (e-mail: lukky.h20@mhs.istts.ac.id).

ABSTRACT Games, a now extremely prevalent form of global entertainment, have emerged as a leading
industry in the entertainment media, surpassing other entertainment media such as books, films, and music.
However, game development is a complex endeavor, requiring a diverse set of talents to create a decent game
for people to enjoy. Some of the talents needed to create a good game is a game designer, which dictates how
a player can interact with the world, a writer, which pours a meaningful story inside said world, and a
composer, which uses music to elevate the emotions evoked by the game and its events. With that being said,
this research aims to streamline the creation process of the game designers, specifically the level designers
by focusing on procedural map generation and artificial intelligence to create a map that is in a playable state
for the players to play in. Procedural map generation, facilitated by a genetic algorithm inspired by Darwin's
evolutionary theory, expedites the level design process. The research explores two types of map generation—
tile-based and template-based, each with distinct advantages and disadvantages. Through user acceptance
tests and expert-level analysis, it is evident that the genetic algorithm performs effectively, achieving a
noteworthy level of player satisfaction.

KEYWORDS Game, Genetic Algorithm, Map, Procedural Map Generation.

I. INTRODUCTION
Every human being needs entertainment in their life.

Forms of entertainment may vary, one of which are games.
No less than other types of entertainment such as films or
books, games are a type of entertainment that requires a high
level of technical complexity in its creation. Various
components such as story, gameplay, system balancing, and
marketing are needed in designing a game [1]–[3]. The more
complex a game, the more complex its constituent
components will be. Some of the important components in
making games is level design and artificial intelligence for
NPCs. Even though these two components are not the top
priority in making a game, without a good level of design
and believable AI from the NPCs, the game will feel bland.

In making a level, level design requires a lot of effort in
terms of time, assets, and the endurance of the designer who
designs it. Level creators must consider various things
starting from the player's position, enemy position, item
position, good path arrangements so that the game is
interesting and balanced, and a few other considerations. For

example, Live Service games such as Valorant, Apex
Legends, Fortnite, or Overwatch 2 require continuous map
updates so that players don't get bored of playing and switch
to another game. Because of this complexity, various
research was carried out to make it easier for designers to
carry out level design which ultimately give birth to
Procedural Map Generation [4]–[6]. Some examples of
algorithms in procedural map generation are Perlin Noise [7]
which is used in the game Minecraft, Fractal Terrain
Generation [8] in the game Terraria, or Genetic algorithms
[9]–[15] in various existing studies.

This research focuses on creating a snowball throwing
game called Splatted. The creation of the level design for this
game will not be done manually but automatically using a
genetic algorithm. Apart from that, in this game artificial
intelligence will also be developed which can influence the
behavior of Non Player Characters (NPC) so that the game
can be more interesting. It is expected that through this
research, similar games can apply the methodology so that
the games developed can become more interesting.

 Lukky Hariyanto, et. al.: Procedural Map Generation… (April 2024)

VOLUME 06, No 01, 2024 DOI: 10.52985/insyst.v6i1.353 25

II. “SPLATTED” GAME
This game is developed for the purpose of research and as a

case study in testing. This sub-chapter will discuss details
related to gameplay and the artificial intelligence being
developed.

A. GAMEPLAY
 Splatted is a game in which two teams, each consisting of

five players, engage in a snowball war. Each successful hit on
an opposing player scores points, with the primary objective
being to accumulate the highest points and emerge as the
winner of the snowball war. The winning team is either the
one that meets the required point target or has more points than
the opposing team when the game time ends. Players can
perform several actions in this game, including picking up the
ball from the ground, throwing the ball with the goal of hitting
an opposing player, catching the ball thrown by an opposing
player, and executing a “Fakeout” to deceive an opponent
attempting to catch the thrown ball. Figure 1 provides an
example of Splatted game footage where the white area
represent the game area (snow), and the dark gray colors
represent rocks (obstacles). Players and snowball throwers are
only allowed to move within the snow areas.

Figure 1. Screenshot of the Splatted game

B. SPECIAL BALL
Apart from the general snowballs, to add some spice into

the game, several special spawners are provided in the levels.
Each spawner has a special ball that can be picked up and used
to attack opponents. Table 1 is a table of the special balls
available and the function of these balls.

TABLE I

SPECIAL BALLS IN SPLATTED

Name Display Function
Ice Piercer

Pierces past opposing players
and teammates

Snow-A-Rang

The ball returns to the thrower
after hitting someone

Explod-o-Ball

The ball explodes after a set
duration and hits all the players
in the explosion area

Freezing Winter

The player hit by the thrown
ball is slowed down for several
seconds

Stone Auger

Penetrates players and walls,
then breaks into 3 normal
smaller snowballs

C. ARTIFICIAL INTELLIGENCE (NPC)
In Splatted games, the behavior of Non-Player Characters

(NPCs) is governed by a Finite State Machine (FSM).
Utilizing an FSM allows NPCs to have several states, each
providing different behaviors. Transitions between states in
the FSM are influenced by real-time conditions of the NPCs,
which could be affected by other NPCs, players, or the
surrounding environment. The following section will
describe the various states that an NPC can possess:
1) RANDOM WALKING

If the NPC does not have a snowball, it will walk to a
randomly selected location, attempting to find a snowball on
the ground along the way. However, if the NPC already
possess a snowball, it will start searching for opponents. If the
NPC reaches the target location without finding a snowball or
an opponent, a new location will be randomly selected, and the
search will resume.

2) TAKE THE BALL
If the NPC in “Random Walking” state spots a snowball or

a special ball, it will transition to the “Take the Ball” state. In
this state, the NPC will walk towards the identified ball to pick
it up. After securing the ball, or if the ball is taken by someone
else, the NPC will revert to the “Random Walking” state.
3) AIM & THROW

If an NPC in the ‘Random Walking’ state has a ball in hand
and spots a member of the opposing team, the NPC will
transition to the ‘Aim & Throw’ state. In this state, the NPC
will cease movement and aim at the opponent. After
confirming the aim is accurate, the NPC will throw the ball
towards the predicted future position of the opponent.
Following the throw, the NPC will revert to the ‘Random
Walking’ state.
4) FOLLOW TARGET

If the target being aimed at in the “Aim & Throw” state
disappears from the NPC’s view, the NPC will transition to
the “Follow Target” state. In this state, the NPC will pursue
the opponent with the goal of regaining vision of the target.
During this pursuit, if the NPC fails to locate the opponent
within a certain timeframe, the NPC will abandon the chase
and revert to the “Random Walking” state.

 Lukky Hariyanto, et. al.: Procedural Map Generation… (April 2024)

VOLUME 06, No 01, 2024 DOI: 10.52985/insyst.v6i1.353 26

5) CATCH BALL
 Specifically, the ‘Catch Ball’ state can be entered from any

other state when the NPC spots a ball being thrown in its
direction. The purpose of this state is to enable the NPC to
attempt to catch balls that are being thrown at it.

III. IMPLEMENTATION OF GENETIC ALGORITHM INTO
SPLATTED GAMES

In this sub-chapter, we will delve into the details of using
genetic algorithms in Splatted games. This includes
everything from the representation and fitness values, to the
methods employed in each operation of the genetic algorithm.

A. REPRESENTASION
In this research, two level generation models are utilized:

tile-based generation and template-based generation. Each
model has its own unique process and method of
representation.

Tile-Based Generation

In this model, the individual representation is a 1-
dimensional array with a length equal to the size of the level
to be created (for instance, for a 10x10 level, the individual
length would be 100). Each gene in this individual will hold a
value ranging from 0 to 3, where the number 0 represents an
empty area, 1 represents a rock/obstacle, 2 represents the
position of a special ball spawner, and 3 represents the player’s
position. Figure 2 illustrates an example of a tile-based
representation converted into a player-understandable level,
with the level size being 3x3.”

Figure 2. Example of Tile Based Representation into a map

Template-Based Generation
Similar to tile-based generation, template-based generation

is also represented as a 1-dimensional array. However, unlike
tile-based generation, the gene value in this model does not
contain the numbers 0-3, which represent objects at the level.
Instead, it has values ranging from -n to n, where n is the
number of prepared templates. A negative value indicates that
there will be one special ball in the middle of the level in the
template with ID number x. Apart from the gene value,
another difference from the tile-based representation is the
length of the individual. Template-based representations have
shorter individual lengths because one template consists of
5x5 tiles. For instance, if the level size is 10x10, the individual
length used is 100/(5x5), or 4.

This research incorporates three types of templates, each of
which has several variations. The three types of templates are
as follows:
1. Oneway Template

A Oneway template refers to a variation of the template
that, when rotated by 90°, 180°, or 270°, still produces
the same level. For instance, in Figure 3, the level is
represented by code 12. This type of template is available
in only three variations.

2. Twoway Template
A Twoway template refers to a variation of the template
that, when rotated by 90° or 270°, yields different level
results. However, when rotated by 180°, it produces the
same level. For instance, in Figure 3, the level is
represented by code 5. This type of template is available
in eight variations.

3. Fourway Template
A ‘Fourway’ template refers to a variation of the
template that, when rotated by 90°, 180°, or 270°, yields
different level results. For instance, in Figure 3, the level
is represented by either code 8 or 24. This type of
template is available in five variations

In this research, a total of 39 templates were provided. These
were derived from 3 oneway templates, 16 twoway templates
(8 variations x 2), and 20 fourway templates (5 variations x 4).
For twoway and fourway templates, a single variation will
yield 2 and 4 different levels respectively when implemented.
Figure 3 illustrates an example of a template-based
representation converted into a player-understandable level,
with the level size being 10x10.

Figure 3. Example of Template-Based Representation Converted into a
Map

B. GENETIC ALGORITHM OPERATOR
Genetic algorithms encompass several operators, each with

a variety of algorithmic choices. This research has explored
these algorithms to identify the most suitable and appropriate
one for accomplishing level creation, which is the primary
focus of this research. The operators and their respective
choices are as follows:

 Lukky Hariyanto, et. al.: Procedural Map Generation… (April 2024)

VOLUME 06, No 01, 2024 DOI: 10.52985/insyst.v6i1.353 27

1. Parent Selection
The selection method [16][17] used by this research is
the Roulette Wheel [18]. This method is suitable for use
in this research considering that the better the fitness
score, the greater the chance of an individual or level
candidate being selected as a parent. Where levels that
are not good are generally less playable so that if they are
selected it will cause the next generation to also be less
playable.

2. Crossover
This research uses the uniform crossover algorithm [19]-
[22] as the operator. Where this algorithm will provide a
50% chance for each gene to be exchanged between the
2 selected parents. Figure 4 is an example of uniform
crossover visualization. This algorithm is suitable to be
applied because in this study 1 gene represents 1
tile/template. So that the levels produced in the next
generation will have good variations.

Figure 4. Visualization of Uniform Crossover

3. Mutation

For the same reasons as selecting the crossover
algorithm, the mutation algorithm [23][24] partial
shuffle mutation or scramble mutation was chosen and
used in this study. This algorithm has more opportunities
for gene changes in the next generation considering that
all genes between the two barriers will be randomized in
order and place. Figure 5 is an example of scramble
mutation visualization.

Figure 5. Visualization of Scramble Mutation

4. Elitism

The elitism method [25][26] used in this research is to
combine all offspring (children) and some parents who
have the best fitness scores in the previous generation.
For example, the minimum population that must be
provided is 100 while the previous generation gave birth
to 80 units, the remaining 20 are taken from parents who
have the best fitness scores.

C. STOP CONDITION
The stopping condition for the genetic algorithm in this

research is convergence. If all individuals across the last 100
generations have not shown significant development or have
converged, then the iteration of the genetic algorithm is halted.
This approach is adopted considering that level formation
occurs during the initial game loading and needs to be efficient
to prevent long waiting times for players. Although it’s
undeniable that level formation can sometimes take a
considerable amount of time (around 20 seconds), this
duration is still within the player’s tolerance for waiting time.

IV. FITNESS FUNCTION
The fitness function plays a crucial role in determining the

quality of an individual in the genetic algorithm. In this
research, five fitness functions will be utilized for tile-based
generation, and four fitness functions will be employed for
template-based generation. Notably, three out of the four
fitness functions for template-based generation are also used
in tile-based generation.

A. FITNESS NUMBER OF STONES
This fitness function is utilized to regulate the distribution

of stones within a level. The primary objective is to ensure that
a level doesn’t consist solely of stones, or conversely, lack of
it entirely. Certain parameters are initially established, such as
MinR (the minimum number of stones in a level) and MaxR
(the maximum number of stones in a level).

𝑚𝑚 = �
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑅𝑅, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑅𝑅 < 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑅𝑅 −𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑅𝑅 > 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
0, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 < 𝑅𝑅 < 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

 (1)

As can be seen in (1), the value of ‘m’ will be made negative

when the number of stones is either too few (less than MinR)
or too many (greater than MaxR). However, if it falls within
the range, the value of ‘m’ will be set to 0, indicating that there
are no constraints on the number of stones in that level.

𝑀𝑀 = �𝐴𝐴 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 > 𝐴𝐴 −𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 < 𝐴𝐴 −𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (2)

To ensure that the fitness value does not become negative,

normalization is performed on the value of ‘m’. Equation (2)
is used to find the divisor to ensure proper normalization.
There are two methods to find the divisor for normalization:
subtracting the area with the maximum number of stones, or
directly taking the minimum number of stones when the
result of subtracting the area and the maximum number of
stones is less than the minimum number of stones

 Lukky Hariyanto, et. al.: Procedural Map Generation… (April 2024)

VOLUME 06, No 01, 2024 DOI: 10.52985/insyst.v6i1.353 28

𝐹𝐹 = �1 − 𝑚𝑚
𝑀𝑀
�
2
 (3)

Equation (3) represents the normalization equation utilized

in this fitness function. This function ensures that the F value
will never be negative. It’s important to note that this fitness
function is exclusively used in tile-based generation. This is
because, in template-based generation, the number of stones
is determined by the composition of the used template.
Therefore, applying this function in a template-based context
would disrupt the variation occurences in the existing
templates.

B. GROUP STONE SIZE FITNESS
The fitness function is utilized to calculate the size of stone

groups present within a level. The primary objective of this
fitness function is to ensure that no stone group is excessively
large or too small. Similar to the previous fitness function, (1)
and (2) remain employed in computing this fitness function.
However, unlike the previous fitness function, which was
calculated for one level, in this fitness function, both equations
are computed for each stone group encountered.

𝐹𝐹 = �
∑ �1−

𝑚𝑚𝑖𝑖
𝑀𝑀 �𝑛𝑛

𝑖𝑖= 1

𝑛𝑛
�
2

 (4)

To calculate the fitness value of a stone group size, we need
to first determine the values of m and M for all stone groups.
Once we have these values, we will use (4) to calculate the
fitness value. It's important to note that the stone group size
fitness is only applied in tile-based generation, and not in
template-based generation.

C. ACCESSIBLE AREA FITNESS
This fitness function is employed to calculate the extent of

the area accessible to the player. The more interconnected
areas within the level, the better the level is considered. The
primary objective of this function is to ensure that there are
few inaccessible areas within the level, as the player
character in the splatted game cannot pass through roofs or
destroy obstacles.

𝐹𝐹 = �𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

�
2
 (5)

Equation (5) represents the fitness function used to
evaluate the quality of a level based on its area. Here, the
largest value of a corresponds to the largest connected area,
while the total value of a represents the total number of
objects in the level that are not stones.

D. SPECIAL BALL ACCESSIBILITY FITNESS
This fitness function aims to ensure that each special ball

present in the level is reachable by a player. However, this
accessibility is not for all players but only for the closest
player to the ball. Thus, the appearance of special balls in the
level ensures that they are reachable by at least the nearest
player.

𝐹𝐹 = �𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

�
2
 (6)

Equation (6) is the fitness value equation that ensures
all special balls can be reached by the nearest player. 𝑃𝑃total
represents the total number of special balls, while 𝑃𝑃akses is
the number of special balls that can be reached without any
obstacles by the nearest player. A special ball is
deemed accessible if a path search using the A* algorithm
can return a path from the nearest player to the special ball
without any obstacles.

E. SPECIAL BALL RATIO FITNESS
The special ball ratio fitness function is used to ensure the

presence of special balls in a level. Several predetermined
parameters are defined beforehand, including MinP (the
minimum number of special balls in a level) and MaxP (the
maximum number of special balls in a level).

𝑚𝑚 = �
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑃𝑃, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑃𝑃 < 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑃𝑃 −𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑃𝑃 > 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
0, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 < 𝑃𝑃 < 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

 (7)

As depicted in (7), it can be observed that the value of
𝑚𝑚m will be made negative when the number of special balls
is insufficient (less than MinP) or excessive (greater than
MaxP). However, if the number of special balls falls within
the specified range, the value of m will be set to 0, indicating
no constraints on the number of special balls in the level.

𝑀𝑀 = �𝐴𝐴 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 > 𝐴𝐴 −𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 < 𝐴𝐴 −𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (8)

To prevent fitness values from becoming negative,

normalization is performed on the value of 𝑚𝑚. Equation (8)
presents the equation to find the divisor for proper
normalization. There are two approaches to finding the
divisor for normalization: subtracting the area from the
maximum number of special balls or directly taking the
minimum number of special balls when the difference
between the area and the maximum number of special balls
is less than the minimum number of stones.

𝐹𝐹 = �1 − 𝑚𝑚
𝑀𝑀
�
2
 (9)

 Lukky Hariyanto, et. al.: Procedural Map Generation… (April 2024)

VOLUME 06, No 01, 2024 DOI: 10.52985/insyst.v6i1.353 29

Equation (9) represents the normalization equation used in
this fitness function. Through this equation, it is ensured that
the fitness value 𝐹𝐹 will never be negative.

F. TEMPLATE VARIETY FITNESS
The final fitness function utilized in this research is

template variety. The objective of this fitness function is to
avoid repetitive occurrences of the same template within a
level. Consequently, the aim is to generate levels with a high
template variety, ensuring that multiple templates are used
rather than repeating one or two templates multiple times.

𝑥𝑥 = �0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑙𝑙 > 0
𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑙𝑙 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑖𝑖 − 𝑇𝑇𝑙𝑙 < 0 (10)

As shown in (10), it can be observed that the value of x

will be made negative when the number of occurrences of a
template exceeds the given tolerance limit. However, if it is
within the tolerance, the value of x will be set to 0. This
calculation is performed for each template encountered.

𝐹𝐹 = �
0 𝑓𝑓𝑓𝑓𝑓𝑓 ∑ (1+𝑥𝑥)𝑡𝑡

𝑖𝑖=1
𝑡𝑡

< 0

�∑ (1+𝑥𝑥)𝑡𝑡
𝑖𝑖=1

𝑡𝑡
�
2

 𝑓𝑓𝑓𝑓𝑓𝑓 ∑ (1+𝑥𝑥)𝑡𝑡
𝑖𝑖=1

𝑡𝑡
> 0

 (11)

After calculating the occurrences of all templates on a

level using (10), (11) is employed to compute the fitness
value by calculating the squared average of the x values. If
the resulting value is negative, the fitness value is set to 0 to
avoid interference with the values of other fitness functions.
This fitness function is specifically utilized for template-
based generation.

V. EXPERIMENTAL TESTING
This research employs two testing techniques. The first

one involves user acceptance testing or questionnaire-based

assessment. The second technique involves analyzing the
levels generated by game experts.

A. USER ACCEPTANCE

Figure 6. Level Generation Selection by Respondents

The questionnaire was completed by 32 individuals whose

profile fits that of gamers aged 18–22 years, with a minimum
of 2–3 hours of daily gaming, and who have previously played
MOBA or 2D real-time strategy games such as Bomberman.
Figure 6 depicts the percentage of respondents selecting
different level generation modes. 46% opted to try both
modes, while the remainder only tried one of the modes.

Figure 7. Respondents' Given Scores

Meanwhile, Figure 7 illustrates the ratings provided by

respondents who have tried both modes as well as those who

Figure 8. Visualization of Fitness Flow in Generating a Map

 Lukky Hariyanto, et. al.: Procedural Map Generation… (April 2024)

VOLUME 06, No 01, 2024 DOI: 10.52985/insyst.v6i1.353 30

have tried only one mode. The questionnaire results reveal that
only one respondent found the generated levels to be
unsatisfactory, while the remaining 31 individuals rated the
levels with a minimum score of 3. Through Figure 7, it can be
inferred that the generated levels meet players' expectations.

B. ANALYSIS OF THE LEVELS
In the level analysis conducted by expert evaluation, several

levels were generated using both tile-based generation and
template-based generation methods. The expert, with a profile
matching that of a high-rated MOBA player who spends 5-6
hours gaming daily, was asked to analyze several levels.
Figure 8 (from left to right) showcases the best 20 x 30 tile-
sized levels for two examples of template-based generation
and two examples of tile-based generation. From the four
exemplary levels, it is evident that all levels feature open areas
conducive to player strategy, with no inaccessible or enclosed
spaces, appropriately placed special items, and a visually
appealing aesthetic suitable for gameplay.

Regarding the analysis of the levels based on their fitness
values, both levels generated by template-based generation
exhibit a high speed in achieving maximum fitness or
generating good levels. Meanwhile, the two levels produced
by tile-based generation, although capable of attaining high
fitness values, require more time due to the gradual changes
that occur per tile in tile-based generation.

VI. CONCLUSION
In this study utilizing the splatted game, it can be concluded

that genetic algorithms perform well in generating levels that
are enjoyable, playable, and meet player expectations.
However, the main drawback of level generation using genetic
algorithms lies in the significant dependency on the fitness
function employed. The quality of generated levels improves
when the fitness function aligns accurately with the desired
criteria. Achieving this alignment necessitates a considerable
amount of time for experimenting with and refining various
fitness function variants.

ACKNOWLEDGEMENTS
We extend our sincere gratitude to the Surabaya Institute of
Integrated Science and Technology for their support and
facilitation of this research.

AUTHOR CONTRIBUTIONS
Lukky Hariyanto: Application Development, Article
Writing, Image and Data Provision.
Hendrawan Armanto: Article Writing, Article
Copyediting, Finishing.

COPYRIGHT

This work is licensed under a Creative
Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.

REFERENCES
[1] J. Schell, The Art of Game Design: A Book of Lenses, Third

Edition. CRC Press, 2019.
[2] E. Adams, Fundamentals of Game Design. Pearson Education,

2010.
[3] M. Moore, Basics of Game Design. CRC Press, 2016.
[4] N. A. Barriga, A Short Introduction to Procedural Content

Generation Algorithms for Videogames. 2018.
[5] V. Kraner, I. Fister jr, and L. Brezočnik, “Procedural Content

Generation of Custom Tower Defense Game Using Genetic
Algorithms,” 2021, pp. 493–503.

[6] S. Putra and W. Istiono, “Implementation Simple Additive
Weighting in Procedural Content Generation Strategy Game,”
vol, vol. 4, pp. 9–18, 2022.

[7] E. Frank and N. Olsson, “Procedural city generation using Perlin
noise.” 2017.

[8] N. Sainio, “TERRAIN GENERATION ALGORITHMS,” 2023.
[9] A. Lambora, K. Gupta, and K. Chopra, “Genetic Algorithm- A

Literature Review,” in 2019 International Conference on
Machine Learning, Big Data, Cloud and Parallel Computing
(COMITCon), 2019, pp. 380–384, doi:
10.1109/COMITCon.2019.8862255.

[10] L. Haldurai, T. Madhubala, and R. Rajalakshmi, “A study on
genetic algorithm and its applications,” Int. J. Comput. Sci. Eng,
vol. 4, no. 10, pp. 139–143, 2016.

[11] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic
algorithm: past, present, and future,” Multimed. Tools Appl., vol.
80, no. 5, pp. 8091–8126, 2021, doi: 10.1007/s11042-020-
10139-6.

[12] H. Armanto, H. A. Rosyid, M. Muladi, and G. Gunawan,
“Evolutionary Algorithm in Game – A Systematic Review,”
Kinet. Game Technol. Inf. Syst. Comput. Network, Comput.
Electron. Control, May 2023, doi: 10.22219/kinetik.v8i2.1714.

[13] W. Alfonsus, A. Hendrawan, and T. J. Gunawan, “Focused Web
Crawler Using Genetic Algorithms and Symbiotic Organism
Search,” 革新的コンピューティング・情報・制御に関する

速報, vol. 15, no. 12, p. 1345, 2021.
[14] H. Armanto, K. Setiabudi, and C. Pickerling, “Komparasi

Algoritma WOA, MFO dan Genetic pada Optimasi Evolutionary
Neural Network dalam Menyelesaikan Permainan 2048,” J.
Inov. Teknol. dan Edukasi Tek., vol. 1, no. 9, pp. 676–684, 2021.

[15] H. Armanto, R. D. Putra, and C. Pickerling, “MVPA and GA
Comparison for State Space Optimization at Classic Tetris Game
Agent Problem,” Inf. J. Ilm. Bid. Teknol. Inf. dan Komun., vol. 7,
no. 1, pp. 73–80, 2022.

[16] S. Prayudani, A. Hizriadi, E. B. Nababan, and S. Suwilo,
“Analysis effect of tournament selection on genetic algorithm
performance in traveling salesman problem (TSP),” in Journal
of Physics: Conference Series, 2020, vol. 1566, no. 1, p. 12131.

[17] S. L. Yadav and A. Sohal, “Comparative study of different
selection techniques in genetic algorithm,” Int. J. Eng. Sci.
Math., vol. 6, no. 3, pp. 174–180, 2017.

[18] J. Y. Setiawan, D. E. Herwindiati, and T. Sutrisno, “Algoritma
Genetika Dengan Roulette Wheel Selection dan Arithmetic
Crossover Untuk Pengelompokan,” J. Ilmu Komput. dan Sist.
Inf., vol. 7, no. 1, pp. 58–64, 2019.

[19] J. L. Pachuau, A. Roy, and A. Kumar Saha, “An overview of
crossover techniques in genetic algorithm,” Model. Simul.
Optim. Proc. CoMSO 2020, pp. 581–598, 2021.

[20] P. Kora and P. Yadlapalli, “Crossover operators in genetic
algorithms: A review,” Int. J. Comput. Appl., vol. 162, no. 10,
2017.

[21] A. Malik, “A study of genetic algorithm and crossover
techniques,” Int. J. Comput. Sci. Mob. Comput., vol. 8, no. 3, pp.
335–344, 2019.

[22] L. Manzoni, L. Mariot, and E. Tuba, “Balanced crossover
operators in genetic algorithms,” Swarm Evol. Comput., vol. 54,
p. 100646, 2020.

[23] B. H. Abed-alguni, “Island-based cuckoo search with highly
disruptive polynomial mutation,” Int. J. Artif. Intell., vol. 17, no.
1, pp. 57–82, 2019.

https://creativecommons.org/licenses/by-nc-sa/4.0/

 Lukky Hariyanto, et. al.: Procedural Map Generation… (April 2024)

VOLUME 06, No 01, 2024 DOI: 10.52985/insyst.v6i1.353 31

[24] A. Hassanat, K. Almohammadi, E. Alkafaween, E. Abunawas,
A. Hammouri, and V. B. S. Prasath, “Choosing mutation and
crossover ratios for genetic algorithms—a review with a new
dynamic approach,” Information, vol. 10, no. 12, p. 390, 2019.

[25] G. Guariso and M. Sangiorgio, “Improving the performance of
multiobjective genetic algorithms: An elitism-based approach,”
Information, vol. 11, no. 12, p. 587, 2020.

[26] H. Du, Z. Wang, W. E. I. Zhan, and J. Guo, “Elitism and
distance strategy for selection of evolutionary algorithms,” IEEE
Access, vol. 6, pp. 44531–44541, 2018.

