
 Kevin Setiono, et. al.: Thesis Defense Scheduling Optimization… (October 2024)

VOLUME 06, No 02, 2024 DOI: 10.52985/insyst.v6i2.361 69

Thesis Defense Scheduling Optimization
Using Harris Hawk Optimization

Kevin Setiono1, Mikhael Setiawan1, Grace L. Dewi1, and Erwin Dhaniswara2
1Informatics Department, Faculty of Science and Technology, Institut Sains dan Teknologi Terpadu Surabaya,
Surabaya, Indonesia
2Informatics Department, Universitas Widya Kartika Surabaya, Surabaya, Indonesia

Corresponding author: Kevin Setiono (e-mail: kevinsetiono@stts.edu).

ABSTRACT This research discusses how the Harris Hawk Optimization (HHO) algorithm handles
scheduling problems. The scheduling of thesis defenses at the Institut Sains dan Teknologi Terpadu Surabaya
(ISTTS) is a complex issue because it involves the availability of lecturers, teaching/exam schedules, lecturer
preferences, and limited room and time availability. The scheduling constraints in this research are divided
into two categories: Hard Constraints and Soft Constraints. Hard constraints must not be violated, including
each lecturer's unique availability, conflicts, and existing exam or teaching schedules. Soft constraints, on the
other hand, include preferences for specific days or rooms for the defense. The complexity of scheduling due
to these two types of constraints leads to longer scheduling times and an increased likelihood of human error.
To automate and optimize this process, the author employs the HHO algorithm. HHO is inspired by the
behavior of the Harris Hawk, known for its intelligence and ability to coordinate while hunting. The results
of the HHO algorithm are translated into a slot meter, which helps to map the solution to available time slots.
The HHO algorithm can generate schedules that comply with 90% of the hard constraints at ISTTS.
Evolutionary algorithms typically have high complexity and computational time; in this case, the researcher
experimented with multiprocessing. Multiprocessing improved the computational time by up to 39%.

KEYWORDS Evolutionary Computation, Harris Hawk Optimization, Scheduling, Time Table

I. INTRODUCTION
Scheduling is a common challenge encountered in daily

life, particularly within higher education institutions. At
Institut Sains dan Teknologi Terpadu Surabaya (ISTTS),
scheduling is typically handled manually by the staff in the
Academic Bureau (BAA). Recurring tasks include class
scheduling, thesis proposal scheduling, and thesis defense
scheduling.

Thesis defense scheduling at ISTTS is particularly
complex due to the numerous constraints that must be
considered, such as lecturer availability, teaching schedules,
exam schedules, lecturer preferences, and room availability.
Thesis defenses at ISTTS involve four to five lecturers, all of
whom must meet these constraints. The constraints are
categorized into two types: hard constraints and soft
constraints. Hard constraints must not be violated under any
circumstances; these include ensuring that lecturers are
available during the scheduled time, that they are not
supervising an exam, and that they are not examining or
supervising another defense at the same time. Soft
constraints, such as room availability and available day slots,

can be adjusted if necessary. However, the complexity of the
scheduling process often results in hard constraint violations.

Given these challenges, this research aims to develop an
optimal scheduling system. This type of optimization
problem is often not solvable using standard mathematical
calculations. As a result, many researchers have explored the
use of metaheuristic algorithms. Metaheuristic algorithms
have proven to be capable of solving complex problems,
including those unsolvable by exact methods. In this study,
the researcher seeks to optimize the scheduling problem
using a derivative of a metaheuristic algorithm, the Harris
Hawk Optimization (HHO) method [1].

Previous studies have applied evolutionary algorithms to
scheduling tasks. Much of this research has focused on job
scheduling [2], [3], [4]. While university scheduling has been
attempted using evolutionary algorithms, those studies
primarily focused on ensuring that lecturers' availability did
not conflict with teaching commitments and that students'
schedules were not too congested. This study addresses a
different gap in the research by focusing on thesis defense
scheduling, where each defense involves coordinating four
to five lecturers in the same time slot.

 Kevin Setiono, et. al.: Thesis Defense Scheduling Optimization… (October 2024)

VOLUME 06, No 02, 2024 DOI: 10.52985/insyst.v6i2.361 70

II. EVOLUTIONARY ALGORITHM

The Evolutionary Algorithm (EA) is a nature-inspired
algorithm that solves problems by mimicking the survival
strategies of living organisms [5]. It operates similarly to
Darwin's theory of evolution. The exact mechanism of an EA
can vary based on the organisms being studied, but most
algorithms typically include the phases of selection, crossover,
and mutation, as shown in Figure 1.

Figure 1. Evolutionary Algorithm Workflow

An advancement of the standard evolutionary algorithm is

Particle Swarm Optimization (PSO) [6], which eventually led
to the development of the Harris Hawk Optimization (HHO)
algorithm. PSO is a global optimization technique that solves
problems by representing solutions as points or surfaces in an
n-dimensional space. Unlike standard evolutionary
algorithms, PSO focuses on the collective behavior of
organisms, usually simulating how animals move and work in
groups, such as bird flocks or fish schools.

Evolutionary algorithms and their variations fall under the
category of metaheuristics. EA has been widely applied to
diverse problems, including scheduling [2], [7], optimization
[8], solver searches [9], [10], and many others. In particular,
EA has been frequently used to address scheduling problems,
such as travel scheduling [11], job scheduling, and university
scheduling [12].

III. HARRIS HAWK OPTIMIZATION (HHO)

Harris Hawk Optimization (HHO) is a relatively new
optimization algorithm inspired by the hunting behavior of the
Harris hawk [1]. HHO is an extension of the evolutionary
algorithm, mimicking the hunting tactics of Harris hawks as
they pursue rabbits. Unlike other hawks, Harris hawks employ
a unique group hunting method. When hunting, they
demonstrate intelligent strategies for tracking, surrounding,
deceiving their prey, and eventually launching a coordinated
attack.

Figure 2. Surprise Pounce Strategy of Harris Hawks

Harris hawks hunt in groups of 2 to 6 individuals, utilizing
a tactic known as the Surprise Pounce, as depicted in Figure 2.
The distinctiveness of this strategy lies in the way the hawks
attack simultaneously from multiple directions, startling the
rabbit and making it difficult for the prey to escape. Over time,
this approach becomes more effective as the rabbit’s energy is
gradually depleted from repeatedly evading the coordinated
group attacks. The phases of the HHO algorithm are illustrated
in Figure 3.

Figure 3. Fase Harris Hawk Optimization[1]

A. EXPLORATION PHASE
During the exploration phase, Harris hawks are randomly

positioned in various locations, awaiting the detection of prey
(rabbits) based on two distinct strategies. These strategies are
applied randomly, with an equal probability of being selected,

 Kevin Setiono, et. al.: Thesis Defense Scheduling Optimization… (October 2024)

VOLUME 06, No 02, 2024 DOI: 10.52985/insyst.v6i2.361 71

determined by the value of q, a random number ranging
between zero and one.

q≥0.5

𝑥𝑥(𝑡𝑡 + 1) = 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) − 𝑟𝑟1|𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) − 2𝑟𝑟2𝑋𝑋(𝑡𝑡)| (1)

q<0.5

𝑥𝑥(𝑡𝑡 + 1) = (𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) − 𝑋𝑋𝑚𝑚(𝑡𝑡)) − 𝑟𝑟3�𝐿𝐿𝐿𝐿 + 𝑟𝑟4(𝑈𝑈𝑈𝑈 − 𝐿𝐿𝐿𝐿)� (2)

The variable 𝑥𝑥(𝑡𝑡 + 1) represents the position vector of the
Harris hawk in the next iteration (1), while 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) denotes a
random position vector of the Harris hawk within the
population. 𝑟𝑟1 dan 𝑟𝑟2 are random numbers ranging from zero
to one, whereas 𝑥𝑥(𝑡𝑡) indicates the position vector of the Harris
hawk in the current iteration. In the second strategy, the Harris
hawk perches based on the position of the rabbit. This strategy
is applied only if q ≥ 0,5 (2). The second strategy in the
exploration phase is described by (2), where 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) is the
position vector of the rabbit in the current iteration,
𝑋𝑋𝑚𝑚(𝑡𝑡) represents the average position vector of all Harris
hawks in the population, 𝑟𝑟3 dan 𝑟𝑟4 are random numbers
ranging from zero to one, LB is the lower bound or minimum
value of the Harris hawk's position vector, and UB is the upper
bound or maximum value of the Harris hawk's position vector.

B. EXPLORATION TO EXPLOITATION TRANSITION
PHASE

The HHO algorithm transitions from the exploration phase
to the exploitation phase based on the remaining energy of the
escaping rabbit. The energy of the rabbit significantly
decreases during the escape process. E represents the energy
level of the rabbit (3), while 𝐸𝐸0 indicates the initial energy
condition of the rabbit (4). This can be calculated using the
formula, where rand is a random value ranging from zero to
one, t denotes the current iteration, and T represents the
predetermined maximum number of iterations.

𝐸𝐸 = 2𝐸𝐸0(1− 𝑡𝑡
𝑇𝑇

) (3)

𝐸𝐸0 = 2𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 1 (4)

C. EXPLOITATION PHASE
In this phase, the Harris hawk employs a surprise pounce to

attack the detected rabbit. However, since the rabbit is also
attempting to escape from the threatening situation, two
distinct scenarios are utilized based on the conditions during
the pursuit by the Harris hawk. The four strategies
implemented are Soft Besiege and Hard Besiege.
• Soft Besiege

In this strategy, the rabbit has sufficient energy and is still
trying to flee. This condition is applied when r ≥ 0,5 and |𝐸𝐸| <
0,5 (5).

(𝑡𝑡 + 1) = ∆𝑋𝑋(𝑡𝑡) − 𝐸𝐸 |𝐽𝐽𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) − 𝑋𝑋(𝑡𝑡)| (5)

∆𝑋𝑋(𝑡𝑡) = 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) − 𝑋𝑋(𝑡𝑡) (6)
𝐽𝐽 = 2(1 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)) (7)

The difference between the position vectors of the rabbit is

calculated using ∆𝑋𝑋(𝑡𝑡) (6). 𝐽𝐽 is a random number computed
using equation (7), which simulates the movement of the
rabbit in its natural habitat. Meanwhile, rand is a random
number ranging from zero to one.

• Hard Besiege
In this strategy, the rabbit is fatigued and possesses low

energy to escape. The Harris hawk encircles the rabbit
aggressively and executes a surprise pounce. This condition is
applied when r ≥ 0,5 and |𝐸𝐸| < 0,5 (8).

𝑋𝑋(𝑡𝑡 + 1) = 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) − 𝐸𝐸|∆𝑋𝑋(𝑡𝑡)| (8)

• Soft Besiege with Progressive Rapid Dives
In this strategy, the rabbit possesses sufficient energy to

escape. Consequently, the Harris hawks perform a soft besiege
before executing a surprise pounce. This strategy differs
slightly from the previous case, where the concept of Levy
flight (LF) is incorporated into the HHO algorithm to mimic
the rabbit's deceptive zigzag movements. As a result, the
Harris hawks carry out a series of rapid dives around the
rabbit, progressively adjusting their positions to account for
the rabbit's deceptive maneuvers.

𝑌𝑌 = 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) − 𝐸𝐸 |𝐽𝐽𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) − 𝑋𝑋(𝑡𝑡)| (9)
𝑍𝑍 = 𝑌𝑌 + 𝑆𝑆 × 𝐿𝐿𝐿𝐿(𝐷𝐷) (10)

In this strategy, the Harris hawk has the freedom to choose

the movement that it considers most advantageous. Therefore,
the hawk moves based on a calculation, where Y represents
the new position vector being considered. If the Harris hawk
assesses that position Y is worse than its current position, it
recalculates its position using calculation X. Here, Z
represents the new position vector, LF is the result of the
"Levy flight" movement calculation, which can be computed
using equation (11), S is a random vector with dimensions 1 x
D, and D is the dimensionality of the problem being solved.
The value of theta is obtained from (12).

𝐿𝐿𝐿𝐿(𝑥𝑥) = 0,01 × 𝑢𝑢×𝜎𝜎

|𝑣𝑣|
1
𝛽𝛽
 (11)

𝜎𝜎 = (
𝛄𝛄(𝟏𝟏+𝛃𝛃)×𝒔𝒔𝒔𝒔𝒔𝒔(𝝅𝝅𝝅𝝅𝟐𝟐)

𝛾𝛾(1+𝛽𝛽
2

)×𝛽𝛽×2(𝛽𝛽−12)
)
1
𝛽𝛽 (12)

Where u and v represent random numbers in the range from

zero to one, and β is a constant with a value of 1.5. Based on
this, we can determine the new position vector for the Harris
hawk using (13). In this case, the value of Y is calculated using
(9), while the value of Z is derived through (10).

 Kevin Setiono, et. al.: Thesis Defense Scheduling Optimization… (October 2024)

VOLUME 06, No 02, 2024 DOI: 10.52985/insyst.v6i2.361 72

𝑋𝑋(𝑡𝑡 + 1) = �𝑌𝑌 𝑖𝑖𝑖𝑖 𝐹𝐹(𝑌𝑌) < 𝐹𝐹(𝑋𝑋(𝑡𝑡))
𝑍𝑍 𝑖𝑖𝑖𝑖 𝐹𝐹(𝑍𝑍) < 𝐹𝐹(𝑋𝑋(𝑡𝑡)) (13)

• Hard Besiege with Progressive Rapid Dives

In this situation, the rabbit lacks the energy to attempt
escape. As a result, the Harris hawk uses a hard besiege
strategy before launching a surprise pounce to catch and kill
the rabbit. This strategy applies when |E|<0,5 and r<0,5 is met.
The concept is similar to the previous strategy, with the main
difference being that the hawk aggressively approaches the
rabbit's average position. In this context, (14) is used to find
the new position vector for the Harris hawk. Y dan Z can be
obtained using (15) and (16). Here 𝑋𝑋𝑚𝑚(𝑡𝑡) represents the
average position of all hawks in the population. LF can be
found using (11).

𝑋𝑋(𝑡𝑡 + 1) = �𝑌𝑌 𝑖𝑖𝑖𝑖 𝐹𝐹(𝑌𝑌) < 𝐹𝐹(𝑋𝑋(𝑡𝑡))

𝑍𝑍 𝑖𝑖𝑖𝑖 𝐹𝐹(𝑍𝑍) < 𝐹𝐹(𝑋𝑋(𝑡𝑡)) (14)

𝑌𝑌 = 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) − 𝐸𝐸|𝐽𝐽 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) − 𝑋𝑋𝑚𝑚(𝑡𝑡)| (15)
𝑍𝑍 = 𝑌𝑌 + 𝑆𝑆 × 𝐿𝐿𝐿𝐿(𝐷𝐷) (16)

IV. HHO CONFIGURATION

A. REPRESENTATION
In this research, an individual is represented as a one-

dimensional array, with the size corresponding to the number
of candidate students available. Each cell within the array
contains a float value, which indicates the position of a
candidate student within the available schedule. A higher float
value signifies that the student will be scheduled later in the
available time range. The float value, also referred to as the
representational value, is used in the HHO algorithm
calculations in this research and for fitness evaluation.

The Slotmeter is a tool that functions to convert the
representational number in each cell into the actual slot
position. The Slotmeter is an object that contains two arrays:
the Representational Value and the Actual Value. The
Representational Value is the decimal number used in the
HHO algorithm's calculations [13], while the Actual Value
holds the real values, which include the date, timeslot, and
room associated with the slot.

To perform the conversion, the number in the cell is
compared against all Representational Values in the
Slotmeter. The comparison starts from the first
Representational Value and proceeds sequentially. If a
Representational Value is greater than the number in the cell,
then that cell’s number is considered to correspond to the slot
indexed by that Representational Value. The complete
information regarding the slot, including the date, timeslot,
and room, can be accessed through the Actual Value array,
which holds these details for the slot at the respective index.

Figure 4. Individual Representation

Figure 5. Slotmeter

A simple example of a Slotmeter can be seen in Figure 4.

The Slotmeter shown in Figure 5 is configured with two days,
two timeslots, and one room. When converting Candidate 1
from Figure 4, the first step is to compare the value in the cell,
which is 3.45, against the Representational Value at index 0,
which is 3.25. Since the Representational Value at index 0 is
smaller, the next step is to compare the value in Candidate 1's
cell with the Representational Value at the next index, which
is 5.50. The Representational Value at index 1 is larger than
the number in Candidate 1's cell, so the appropriate slot for the
value in Candidate 1's cell is the slot at index 1. The complete
information about that slot includes the date 01-01-2020,
timeslot number one, and room number one.

𝒈𝒈𝒈𝒈𝒈𝒈 = (𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎−𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎)
𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎×𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋 ×𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋

 (17)

The gap refers to the distance between the representational

values of the Slotmeter. The calculation of the gap in the
Slotmeter can be found in Equation (17). The parameters
minIndividual and maxIndividual are configuration values
from the HHO, while maxTimeSlot, numberOfRooms, and
numberOfDates are derived from the scheduling
configuration.

The Slotmeter must be created before the HHO algorithm
can begin. The process starts by generating the Actual Value,
which includes creating all possible slots with complete
details, such as dates, timeslots, and rooms. After generating
the Actual Value, the next step is to create the
Representational Value. This involves calculating the gap
(distance) as explained in (12). For each slot, the
Representational Value is incremented, and the distance
between adjacent slots is determined by the calculated gap. In
this way, the Slotmeter becomes a tool that represents the
conversion between the abstract representational values used
in the HHO algorithm and the actual values, which contain
detailed information such as dates, timeslots, and rooms. This

 Kevin Setiono, et. al.: Thesis Defense Scheduling Optimization… (October 2024)

VOLUME 06, No 02, 2024 DOI: 10.52985/insyst.v6i2.361 73

Slotmeter is crucial for understanding how the abstract
representation of values can be linked to actual slots within the
context of specific scheduling problems.

B. FITNESS
The fitness system within this scheduling program adopts a

cost-based approach, where each violation of a rule or
constraint results in an increase in the cost or performance
value of the individual. Consequently, individuals with lower
fitness or cost values are deemed superior in this context.
Constraints, often referred to as "constraints," serve as
guidelines or rules that must not be violated, or at the very
least, should be adhered to as closely as possible. These
constraints can be categorized into two types: Hard
Constraints and Soft Constraints. The weights representing the
significance of each rule in the scheduling program can be
found in Table 1.

TABLE I

FITNESS WEIGHT

Constraint Name Constraint Type Weight
SELF_CONFLICT Hard 500
DOSEN_SELF_CONFLICT Hard 500
UJIAN_CONFLICT Hard 100
AJAR_CONFLICT Hard 100
HADIR_CONFLICT Hard 250
DAY_USED Soft 20
REPEATED_CONFLICT Soft 50

In this context, fit(X) represents the fitness value of hawk

X. Constraint[n] denotes the total violations for constraint n,
where n ranges from 1 to 7 (18). Weight[n] signifies the weight
assigned to constraint n. The methodology for calculating the
total weight of violations is explained as follows.

𝑓𝑓𝑓𝑓𝑓𝑓(𝑋𝑋) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[0] ∗ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡[0] + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[1] ∗ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡[1] +

⋯ + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[6] ∗ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡[6] (18)

C. HARD CONSTRAINT
Hard Constraints refer to the limitations or rules that must

be strictly adhered to and cannot be violated. The
implementation of Hard Constraints within the Harris Hawks
Optimization algorithm involves assigning a high fitness cost
to individuals that breach specific rules. This approach
encourages the HHO algorithm to avoid violations of these
rules. By imposing a significant cost, the HHO algorithm is
incentivized to produce solutions that comply with the
established guidelines. In the context of this scheduling
program, there are five rules identified as Hard Constraints:
1. SELF_CONFLICT: Candidates must not occupy the

same slot. This constraint prevents a candidate's defense
schedule from appearing more than once in the same
schedule.

2. DOSEN_SELF_CONFLICT: Participants in the defense
must not have the same supervising professor, co-

supervisor, or examiners as other participants in the same
schedule.

3. HADIR_CONFLICT: The defense schedule for
professors must fall within their working hours.

4. AJAR_CONFLICT: A professor must not be scheduled
to teach during the defense schedule.

5. UJIAN_CONFLICT: There must be no overlap between
the professor's schedule and the exam schedule (e.g.,
mid-term and final exams).

D. SOFT CONSTRAINT
Soft Constraints are limitations or rules that may be violated

if conditions do not allow adherence, yet they should ideally
be followed or minimized in violation. The fitness value
assigned when such violations occur is lower than that for
Hard Constraints. This design encourages the HHO algorithm
to strive to minimize breaches of these rules while still
permitting a degree of violation at a lower level. By assigning
a lower cost to Soft Constraints, the HHO algorithm prioritizes
compliance with Hard Constraints over Soft Constraints. In
the context of this scheduling program, there are two rules
classified as Soft Constraints:
1. DAY_USED: The number of days in the schedule or

individual should be minimized. This rule implies that a
violation will occur for each day utilized in a hawk's
schedule. The constraint suggests that the generated
defense schedule should have a shorter duration.
Emphasis on this constraint aims to encourage the HHO
algorithm to prefer schedules that utilize fewer days
rather than those that extend over more days.

2. REPEATED_CONFLICT: Professors should not
supervise or examine more than three consecutive times,
either in examination or guidance roles. This constraint
is implemented to ensure that professors have adequate
breaks between their examination and supervision
duties.

E. MIN MAX NORMALIZATION
MinMax normalization operates by transforming cell

values into a specified range while preserving the differences
among those values. Maintaining these differences is crucial
because the optimal solution in this context is an individual
with diverse cell values. By applying MinMax normalization
(19), the values of a hawk do not tend to converge toward
either the minimum or maximum bounds of the individual. An
example of Individual Representation can be seen in Figure 6.

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑋𝑋−𝑜𝑜𝑜𝑜𝑜𝑜_min (ℎ𝑎𝑎𝑎𝑎𝑎𝑎)

old_max(ℎ𝑎𝑎𝑎𝑎𝑎𝑎)−𝑜𝑜𝑜𝑜𝑜𝑜_min (ℎ𝑎𝑎𝑎𝑎𝑎𝑎)
 × (𝑛𝑛𝑛𝑛𝑛𝑛_𝑚𝑚𝑚𝑚𝑚𝑚 −

𝑛𝑛𝑛𝑛𝑛𝑛_min (ℎ𝑎𝑎𝑎𝑎𝑎𝑎)) + 𝑛𝑛𝑛𝑛𝑛𝑛_ min(ℎ𝑎𝑎𝑎𝑎𝑎𝑎) (19)

 Kevin Setiono, et. al.: Thesis Defense Scheduling Optimization… (October 2024)

VOLUME 06, No 02, 2024 DOI: 10.52985/insyst.v6i2.361 74

Figure 6. Individual Representation

MinMax normalization is applied within the Harris Hawk

Optimization (HHO) algorithm during the translation or

conversion from float representation to schedule
representation. Consequently, when fitness calculations are
performed, the information contained in the individual
remains relatively consistent with its pre-normalization state.
The MinMax normalization process for a single individual
uses (19).

V. THESIS DEFENSE SCHEDULING
In this scheduling system, specific inputs are required for

effective operation. All inputs will be entered in the form of an
Excel file. The content of the Excel file will be presented in
this study in tabular form.

TABLE II
CANDIDATE LIST

The XLSX input file consists of four sheets: the candidate

list, class schedule, examination schedule, and attendance
schedule. The "Candidate List" sheet in Table 2 contains
information about the students who have registered for their
thesis defenses at the Institut Sains dan Teknologi Terpadu
Surabaya. In addition to details about the candidates, this
worksheet also includes data regarding the supervising
lecturers, co-supervisors (if applicable), and three examiners.
If there is no co-supervisor, the corresponding column will be
filled with the text “[EMPTY].”

The Class Schedule sheet includes information such as the
name of the lecturer, time, course title, number of credit hours
(with one credit hour assumed to be 50 minutes according to
the ISTTS academic guidelines), and the day of the week.
Similarly, the Examination Schedule sheet contains fields
such as the lecturer's name, course title, date, time, and
whether it pertains to the mid-term (UTS) or final exam
(UAS).

TABLE III

ATTENDANCE SCHEDULE

Constraint Name Attendance Schedule
Kevin Setiono,
S.Kom.

09:00-13:00,08:00-17:00,08:00-
17:00,08:00-17:00,09:00-13:00

Mikhael
Setiawan,
S.Kom.

08:00-17:00,08:00-17:00,08:00-
17:00,08:00-17:00,08:00-17:00

Evan Kusuma
Susanto,
S.Kom.

08:00-17:00,08:00-17:00,08:00-
17:00,08:00-17:00,08:00-17:00

The five attendance times indicate the arrival and departure

times of lecturers in sequential order from Monday to Friday.
Each entry in the attendance schedule is separated by the
character "-", representing the check-in and check-out times.
If the attendance schedule includes more than five entries, only
the first five entries will be utilized. An example of the
attendance schedule can be found in Table 3.

VI. EXPERIMENT RESULTS
Experiments were conducted to test the optimal HHO

configuration and fitness weights, showed in Table 4, in
scheduling thesis defenses at the Institut Sains dan Teknologi
Terpadu Surabaya. In addition to configuration trials, testing
was performed on all available schedule data. The
implementation of multiprocessing was tested on the

NRP SUPERVISING
LECTURER

CO-
SUPERVISOR EXAMINER 1 EXAMINER 2 EXAMINER 3

219210615

Hendrawan
Armanto, S.Kom.,
M.Kom.

[EMPTY]

Yosi Kristian, Dr.,
S.Kom., M.Kom.

Lukman Zaman
PCSW, Dr.,
S.Kom., M.Kom.

Arya Tandy
Hermawan, Ir.,
M.T.

219210615

Hendrawan
Armanto, S.Kom.,
M.Kom.

[EMPTY]

Yosi Kristian, Dr.,
S.Kom., M.Kom.

Lukman Zaman
PCSW, Dr.,
S.Kom., M.Kom.

Arya Tandy
Hermawan, Ir.,
M.T.

219210615

Hendrawan
Armanto, S.Kom.,
M.Kom.

[EMPTY]

Yosi Kristian, Dr.,
S.Kom., M.Kom.

Lukman Zaman
PCSW, Dr.,
S.Kom., M.Kom.

Arya Tandy
Hermawan, Ir.,
M.T.

 Kevin Setiono, et. al.: Thesis Defense Scheduling Optimization… (October 2024)

VOLUME 06, No 02, 2024 DOI: 10.52985/insyst.v6i2.361 75

performance of the HHO algorithm. Each weight would be
tested a minimum of five times.

TABLE IV

TEST FITNESS WEIGHTS

Test Constraint Name 1 2 3
SELF_CONFLICT 200 1000 500
DOSEN_SELF_CONFLICT 200 1000 500
HADIR 200 500 250
UJIAN 200 500 100
AJAR 200 500 100
DAY 100 50 20
REPEATED 100 50 50

TABLE V
TOTAL CONFLICT AND CONFLICT WEIGHT

Test Fitness Number Total
Conflict

Total Conflict
Weight

F1R1 33 5600
F1R2 47 8200
F1R3 39 6600
F1R4 47 8200
F1R5 36 6200
F2R1 25 7100
F2R2 42 16550
F2R3 53 20650
F2R4 48 18600
F2R5 60 25150
F3R1 29 2080
F3R2 29 2390
F3R3 36 3790
F3R4 29 2410
F3R5 33 4400

Figure 7. HHO Trial Graph for Thesis Scheduling with Three Types of
Fitness Weights and Five Runs for Each Fitness Type

In the experiment for testing fitness weights, each

configuration was executed five times as written in Table 5,
and the best and worst outcomes from all trials were recorded

as in Figure 7. The success of the weight trials was measured
based on the non-violation of hard constraints. Thus, the
evaluation of the weight configuration was based on the
number of hard constraint violations that occurred. A smaller
number of hard constraint violations indicates a better weight
configuration.

In the first fitness trial, the first run yielded the best result
with a total of 23 hard constraint violations. These violations
included 10 violations of attendance rules, 0 violations of
exam rules, and 13 violations of teaching or lecture rules. The
scheduling outcome from the first trial resulted in a schedule
lasting 10 days.

In the second fitness trial, the first run also achieved the best
outcome with 13 hard constraint violations: 1 attendance rule
violation and 12 teaching rule violations. The schedule in this
trial lasted 12 days.

The third fitness trial, specifically the third run, produced
the best result. The first trial of this configuration generated a
total of 15 hard constraint violations, consisting of 2 violations
of attendance rules and 13 violations of teaching rules. The
schedule from this trial lasted 14 days.

In the third configuration experiment, it was observed that
the best result from five trials did not yield a more optimal
schedule compared to the best outcome from the second
configuration trial. Despite the differences resulting in less
favorable outcomes, this can be considered as a matter of luck.
Additionally, the BAA administrator responsible for creating
the thesis scheduling at ISTTS during this research indicated
that the constraints related to attendance scheduling are of
higher importance than those concerning lecture or exam
scheduling. Therefore, the third configuration will be adopted
as the final configuration in this experiment..

To enable the HHO algorithm to produce optimal results,
appropriate configurations are essential. Therefore, trials were
conducted to determine the correct HHO configuration. The
tested configurations included maximum iterations, the
number of hawks, minimum individuals, and maximum
individuals. The evaluation of the configurations was
performed using (20).

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 1 − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
 (20)

The configuration trial scores were calculated using
Formula 14. The scores range from 0 to 1, where 0 indicates
the worst outcome and 1 represents the best possible result.
However, in the context of the HHO algorithm, achieving a
score of 1 is not feasible due to the day constraint. Since the
schedule must always account for the use of days, this
constraint is inevitably violated. Seven configurations were
tested to identify the optimal setup, refer to Table 6. Below is
a description of the trials conducted.

0

5000

10000

15000

20000

25000

30000

0

10

20

30

40

50

60

70

F1
R1

F1
R2

F1
R3

F1
R4

F1
R5

F2
R1

F2
R2

F2
R3

F2
R4

F2
R5

F3
R1

F3
R2

F3
R3

F3
R4

F3
R5

HHO on Thesis Defence

Total Conflict Total Bobot ConflictTotal Conflict Weight

 Kevin Setiono, et. al.: Thesis Defense Scheduling Optimization… (October 2024)

VOLUME 06, No 02, 2024 DOI: 10.52985/insyst.v6i2.361 76

TABLE VI
TOTAL CONFLICT DAN CONFLICT WEIGHT

No Min
Individual

Max
Individual

Max
Iteration

Starting
Individual

1 1 10 100 20
2 1 500 100 20
3 1 1000 100 20
4 1 1000 100 50
5 1 1000 500 100
6 1 1000 500 200
7 1 1000 500 500

TABLE VII
CONFIGURATION TESTS AVERAGE RESULTS

Config
Number

Ending
Iteration

Final
Fitness

Time
Elapsed Score

1 100 3093 1,073,666 0,983633
2 100 3223 1.364 0,983281
3 99 3470 1324 0,981542
4 100 3214 3.214,333 0,980957
5 410,666 2306 19.302,333 0,987730
6 428,666 1450 27.688,333 0,992287
7 100 1670 55.614,333 0,991117

To review the final fitness values from all trials, refer to

Table 7. A comparison of configurations one, two, and three
indicates that the parameters min_individual and
max_individual had minimal influence on the final fitness
value. In contrast, testing the number of individuals and
iteration parameters (configurations four through seven) led to
a significant reduction in hard constraint violations and an
improvement in the final fitness value between configurations
three and four. Configuration seven achieved the best result
after increasing both parameters. The fitness results from the
configuration trials are shown in Figure 8.

Figure 8. Fitness Results of Configuration Trials

In configuration six, the HHO algorithm converged

between iterations 400 and 450. Consequently, in
configuration seven, only the number of individuals was
increased. Despite this modification, configuration seven did
not yield a higher-quality schedule. Therefore, configuration
six was determined to be the optimal setup.

TABLE VIII
TOTAL CONFLICT DAN CONFLICT WEIGHT

No Process Type Time Elapsed (Seconds)
1 1 1874
2 1 1128

For the multiprocessing experiment, data from the second

period of the odd semester in the 2020/2021 academic year
were utilized, involving 35 candidates. The experiment was
conducted once for each type of process. The schedule
spanned two weeks, with four timeslots and four rooms. The
HHO setup included a maximum of 100 iterations and 20
hawks. The multiprocessing configuration employed four
workers. The limited number of iterations ensured that the
HHO algorithm would not terminate prematurely due to
convergence, thus minimizing its impact on runtime. The trial
results (see Table 8) indicate that, with a linear process, the
program required 1874 seconds (approximately 31 minutes).
In contrast, with multiprocessing, the task was completed in
1128 seconds (approximately 18.8 minutes), demonstrating a
performance improvement of about 39%.

VII. CONCLUSION
The scheduling of thesis defenses at Institut Sains dan

Teknologi Terpadu Surabaya, using the Harris Hawk
Optimization (HHO) method, successfully produced a
schedule with a hard constraint violation rate of less than 10%.
HHO has proven to be an effective approach for solving time
scheduling problems, especially due to its integrated
exploration and exploitation phases, as well as its phase
transition mechanism. Trials demonstrated that HHO could
schedule approximately 90% of the candidates without
significant hard constraint violations. Additionally,
implementing multiprocessing in the HHO algorithm,
particularly in the fitness calculation process, improved the
algorithm's speed by reducing execution time by 39%.

AUTHORS CONTRIBUTION
Kevin Setiono: Investigation, Original Draft Writing
Preparation, Project Administration, Original Drafting
Writing;
Mikhael Setiawan: Investigation, Data Collection &
Processing, Review & Editing Writing;
Grace Levina Dewi: Investigation, Data Analysis, Results
Interpretation, Review & Editing Writing;
Erwin Dhaniswara: Investigation, Resources;

COPYRIGHT
This work is licensed under a Creative
Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.

0

1000

2000

3000

4000

1 2 3 4 5 6 7

Final Fitness

https://creativecommons.org/licenses/by-nc-sa/4.0/

 Kevin Setiono, et. al.: Thesis Defense Scheduling Optimization… (October 2024)

VOLUME 06, No 02, 2024 DOI: 10.52985/insyst.v6i2.361 77

REFERENCES
[1] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and

H. Chen, “Harris hawks optimization: Algorithm and
applications,” Future Generation Computer Systems, vol. 97,
2019, doi: 10.1016/j.future.2019.02.028.

[2] K. Mesghouni and S. Hammadi, “Evolutionary algorithms for
job-shop scheduling,” Int. J. Appl. Math. Comput. Sci, vol. 14,
pp. 91–103, Nov. 2004.

[3] C. Liu, “An improved Harris hawks optimizer for job-shop
scheduling problem,” Journal of Supercomputing, vol. 77, no.
12, 2021, doi: 10.1007/s11227-021-03834-0.

[4] B. Tagtekin, M. U. Öztürk, and M. K. Sezer, “A Case Study:
Using Genetic Algorithm for Job Scheduling Problem,” CoRR,
vol. abs/2106.04854, 2021, [Online]. Available:
https://arxiv.org/abs/2106.04854

[5] X. Yu and M. Gen, Introduction to Evolutionary Algorithms. in
Decision Engineering. Springer London, 2010. [Online].
Available: https://books.google.co.id/books?id=rHQf_2Dx2ucC

[6] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in
Proceedings of ICNN’95 - International Conference on Neural
Networks, 1995, pp. 1942–1948 vol.4. doi:
10.1109/ICNN.1995.488968.

[7] G. B. Satrya and S. Y. Shin, “Evolutionary computing approach
to optimize superframe scheduling on industrial wireless sensor
networks,” Journal of King Saud University - Computer and
Information Sciences, vol. 34, no. 3, 2022, doi:
10.1016/j.jksuci.2020.01.014.

[8] M. B. Wall, “A Genetic Algorithm for Resource-Constrained
Scheduling by,” Design, 1996.

[9] E. Dinata, H. Budianto, and H. Armanto, “Hyper Sudoku Solver
dengan Menggunakan Harris Hawks Optimization Algorithm,”
INSYST: Journal of Intelligent System and Computation, vol. 2,
no. 1, pp. 20–27, Apr. 2020, doi: 10.52985/insyst.v2i1.153.

[10] B. Milenković, “Implementation of Harris Hawks Optimization
(HHO) algorithm to solve engineering problems,” Tehnika, vol.
76, no. 4, 2021, doi: 10.5937/tehnika2104439m.

[11] H. Armanto, R. Kevin, and P. Pickerling, “Perencanaan
Perjalanan Wisata Multi Kota dan Negara dengan Algoritma
Cuttlefish,” INSYST: Journal of Intelligent System and
Computation, vol. 1, no. 2, pp. 99–109, Dec. 2019, doi:
10.52985/insyst.v1i2.91.

[12] M. Aldasht, M. Alsaheb, S. Adi, and M. A. Qopita, “University
course scheduling using evolutionary algorithms,” in 4th
International Multi-Conference on Computing in the Global
Information Technology, ICCGI 2009, 2009. doi:
10.1109/ICCGI.2009.15.

[13] F. Rothlauf, “Representations for Evolutionary Algorithms,” in
GECCO’12 - Proceedings of the 14th International Conference
on Genetic and Evolutionary Computation Companion, Nov.
2011, pp. 1191–1212. doi: 10.1145/2330784.2330921.

