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ABSTRACT This research discusses how the Harris Hawk Optimization (HHO) algorithm handles 
scheduling problems. The scheduling of thesis defenses at the Institut Sains dan Teknologi Terpadu Surabaya 
(ISTTS) is a complex issue because it involves the availability of lecturers, teaching/exam schedules, lecturer 
preferences, and limited room and time availability. The scheduling constraints in this research are divided 
into two categories: Hard Constraints and Soft Constraints. Hard constraints must not be violated, including 
each lecturer's unique availability, conflicts, and existing exam or teaching schedules. Soft constraints, on the 
other hand, include preferences for specific days or rooms for the defense. The complexity of scheduling due 
to these two types of constraints leads to longer scheduling times and an increased likelihood of human error. 
To automate and optimize this process, the author employs the HHO algorithm. HHO is inspired by the 
behavior of the Harris Hawk, known for its intelligence and ability to coordinate while hunting. The results 
of the HHO algorithm are translated into a slot meter, which helps to map the solution to available time slots. 
The HHO algorithm can generate schedules that comply with 90% of the hard constraints at ISTTS. 
Evolutionary algorithms typically have high complexity and computational time; in this case, the researcher 
experimented with multiprocessing. Multiprocessing improved the computational time by up to 39%. 
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I. INTRODUCTION 
Scheduling is a common challenge encountered in daily 

life, particularly within higher education institutions. At 
Institut Sains dan Teknologi Terpadu Surabaya (ISTTS), 
scheduling is typically handled manually by the staff in the 
Academic Bureau (BAA). Recurring tasks include class 
scheduling, thesis proposal scheduling, and thesis defense 
scheduling.  

Thesis defense scheduling at ISTTS is particularly 
complex due to the numerous constraints that must be 
considered, such as lecturer availability, teaching schedules, 
exam schedules, lecturer preferences, and room availability. 
Thesis defenses at ISTTS involve four to five lecturers, all of 
whom must meet these constraints. The constraints are 
categorized into two types: hard constraints and soft 
constraints. Hard constraints must not be violated under any 
circumstances; these include ensuring that lecturers are 
available during the scheduled time, that they are not 
supervising an exam, and that they are not examining or 
supervising another defense at the same time. Soft 
constraints, such as room availability and available day slots, 

can be adjusted if necessary. However, the complexity of the 
scheduling process often results in hard constraint violations.  

Given these challenges, this research aims to develop an 
optimal scheduling system. This type of optimization 
problem is often not solvable using standard mathematical 
calculations. As a result, many researchers have explored the 
use of metaheuristic algorithms. Metaheuristic algorithms 
have proven to be capable of solving complex problems, 
including those unsolvable by exact methods. In this study, 
the researcher seeks to optimize the scheduling problem 
using a derivative of a metaheuristic algorithm, the Harris 
Hawk Optimization (HHO) method [1]. 

Previous studies have applied evolutionary algorithms to 
scheduling tasks. Much of this research has focused on job 
scheduling [2], [3], [4]. While university scheduling has been 
attempted using evolutionary algorithms, those studies 
primarily focused on ensuring that lecturers' availability did 
not conflict with teaching commitments and that students' 
schedules were not too congested. This study addresses a 
different gap in the research by focusing on thesis defense 
scheduling, where each defense involves coordinating four 
to five lecturers in the same time slot. 
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II. EVOLUTIONARY ALGORITHM 

The Evolutionary Algorithm (EA) is a nature-inspired 
algorithm that solves problems by mimicking the survival 
strategies of living organisms [5]. It operates similarly to 
Darwin's theory of evolution. The exact mechanism of an EA 
can vary based on the organisms being studied, but most 
algorithms typically include the phases of selection, crossover, 
and mutation, as shown in Figure 1.  

 

 
Figure 1. Evolutionary Algorithm Workflow 

 
An advancement of the standard evolutionary algorithm is 

Particle Swarm Optimization (PSO) [6], which eventually led 
to the development of the Harris Hawk Optimization (HHO) 
algorithm. PSO is a global optimization technique that solves 
problems by representing solutions as points or surfaces in an 
n-dimensional space. Unlike standard evolutionary 
algorithms, PSO focuses on the collective behavior of 
organisms, usually simulating how animals move and work in 
groups, such as bird flocks or fish schools.  

Evolutionary algorithms and their variations fall under the 
category of metaheuristics. EA has been widely applied to 
diverse problems, including scheduling [2], [7], optimization 
[8], solver searches [9], [10], and many others. In particular, 
EA has been frequently used to address scheduling problems, 
such as travel scheduling [11], job scheduling, and university 
scheduling [12]. 

 
III. HARRIS HAWK OPTIMIZATION (HHO) 

Harris Hawk Optimization (HHO) is a relatively new 
optimization algorithm inspired by the hunting behavior of the 
Harris hawk [1]. HHO is an extension of the evolutionary 
algorithm, mimicking the hunting tactics of Harris hawks as 
they pursue rabbits. Unlike other hawks, Harris hawks employ 
a unique group hunting method. When hunting, they 
demonstrate intelligent strategies for tracking, surrounding, 
deceiving their prey, and eventually launching a coordinated 
attack.  

 

 

Figure 2. Surprise Pounce Strategy of Harris Hawks 
 

Harris hawks hunt in groups of 2 to 6 individuals, utilizing 
a tactic known as the Surprise Pounce, as depicted in Figure 2. 
The distinctiveness of this strategy lies in the way the hawks 
attack simultaneously from multiple directions, startling the 
rabbit and making it difficult for the prey to escape. Over time, 
this approach becomes more effective as the rabbit’s energy is 
gradually depleted from repeatedly evading the coordinated 
group attacks. The phases of the HHO algorithm are illustrated 
in Figure 3. 

 

 

Figure 3. Fase Harris Hawk Optimization[1] 

A. EXPLORATION PHASE 
During the exploration phase, Harris hawks are randomly 

positioned in various locations, awaiting the detection of prey 
(rabbits) based on two distinct strategies. These strategies are 
applied randomly, with an equal probability of being selected, 
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determined by the value of q, a random number ranging 
between zero and one. 

 
q≥0.5  

𝑥𝑥(𝑡𝑡 + 1) = 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) − 𝑟𝑟1|𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) −  2𝑟𝑟2𝑋𝑋(𝑡𝑡)| (1) 

q<0.5 

𝑥𝑥(𝑡𝑡 + 1) = (𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) − 𝑋𝑋𝑚𝑚(𝑡𝑡)) − 𝑟𝑟3�𝐿𝐿𝐿𝐿 + 𝑟𝑟4(𝑈𝑈𝑈𝑈 − 𝐿𝐿𝐿𝐿)� (2) 

 

The variable 𝑥𝑥(𝑡𝑡 + 1) represents the position vector of the 
Harris hawk in the next iteration (1), while  𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) denotes a 
random position vector of the Harris hawk within the 
population. 𝑟𝑟1 dan 𝑟𝑟2  are random numbers ranging from zero 
to one, whereas 𝑥𝑥(𝑡𝑡) indicates the position vector of the Harris 
hawk in the current iteration. In the second strategy, the Harris 
hawk perches based on the position of the rabbit. This strategy 
is applied only if q ≥ 0,5 (2). The second strategy in the 
exploration phase is described by (2), where 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) is the 
position vector of the rabbit in the current iteration, 
𝑋𝑋𝑚𝑚(𝑡𝑡) represents the average position vector of all Harris 
hawks in the population, 𝑟𝑟3 dan 𝑟𝑟4  are random numbers 
ranging from zero to one, LB is the lower bound or minimum 
value of the Harris hawk's position vector, and UB is the upper 
bound or maximum value of the Harris hawk's position vector. 

B. EXPLORATION TO EXPLOITATION TRANSITION 
PHASE 

The HHO algorithm transitions from the exploration phase 
to the exploitation phase based on the remaining energy of the 
escaping rabbit. The energy of the rabbit significantly 
decreases during the escape process. E represents the energy 
level of the rabbit (3), while 𝐸𝐸0 indicates the initial energy 
condition of the rabbit (4). This can be calculated using the 
formula, where rand is a random value ranging from zero to 
one, t denotes the current iteration, and T represents the 
predetermined maximum number of iterations. 

𝐸𝐸 = 2𝐸𝐸0(1−  𝑡𝑡
𝑇𝑇

)  (3) 

𝐸𝐸0 = 2𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 1  (4) 

C. EXPLOITATION PHASE 
In this phase, the Harris hawk employs a surprise pounce to 

attack the detected rabbit. However, since the rabbit is also 
attempting to escape from the threatening situation, two 
distinct scenarios are utilized based on the conditions during 
the pursuit by the Harris hawk. The four strategies 
implemented are Soft Besiege and Hard Besiege. 
• Soft Besiege 

In this strategy, the rabbit has sufficient energy and is still 
trying to flee. This condition is applied when r ≥ 0,5 and |𝐸𝐸| <
0,5 (5). 

 
(𝑡𝑡 + 1) =  ∆𝑋𝑋(𝑡𝑡) − 𝐸𝐸 |𝐽𝐽𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) − 𝑋𝑋(𝑡𝑡)|   (5) 

∆𝑋𝑋(𝑡𝑡) =  𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) − 𝑋𝑋(𝑡𝑡)    (6) 
𝐽𝐽 = 2(1 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟))    (7) 
 
The difference between the position vectors of the rabbit is 

calculated using ∆𝑋𝑋(𝑡𝑡) (6). 𝐽𝐽 is a random number computed 
using equation (7), which simulates the movement of the 
rabbit in its natural habitat. Meanwhile, rand is a random 
number ranging from zero to one. 

• Hard Besiege 
In this strategy, the rabbit is fatigued and possesses low 

energy to escape. The Harris hawk encircles the rabbit 
aggressively and executes a surprise pounce. This condition is 
applied when r ≥ 0,5 and |𝐸𝐸| < 0,5 (8). 

 
𝑋𝑋(𝑡𝑡 + 1) =  𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) − 𝐸𝐸|∆𝑋𝑋(𝑡𝑡)|   (8) 
 

• Soft Besiege with Progressive Rapid Dives 
In this strategy, the rabbit possesses sufficient energy to 

escape. Consequently, the Harris hawks perform a soft besiege 
before executing a surprise pounce. This strategy differs 
slightly from the previous case, where the concept of Levy 
flight (LF) is incorporated into the HHO algorithm to mimic 
the rabbit's deceptive zigzag movements. As a result, the 
Harris hawks carry out a series of rapid dives around the 
rabbit, progressively adjusting their positions to account for 
the rabbit's deceptive maneuvers. 

 
𝑌𝑌 = 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) − 𝐸𝐸 |𝐽𝐽𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) − 𝑋𝑋(𝑡𝑡)|  (9) 
𝑍𝑍 = 𝑌𝑌 + 𝑆𝑆 × 𝐿𝐿𝐿𝐿(𝐷𝐷)    (10) 
 
In this strategy, the Harris hawk has the freedom to choose 

the movement that it considers most advantageous. Therefore, 
the hawk moves based on a calculation, where Y represents 
the new position vector being considered. If the Harris hawk 
assesses that position Y is worse than its current position, it 
recalculates its position using calculation X. Here, Z 
represents the new position vector, LF is the result of the 
"Levy flight" movement calculation, which can be computed 
using equation (11), S is a random vector with dimensions 1 x 
D, and D is the dimensionality of the problem being solved. 
The value of theta is obtained from (12). 

 
𝐿𝐿𝐿𝐿(𝑥𝑥) = 0,01 × 𝑢𝑢×𝜎𝜎

|𝑣𝑣|
1
𝛽𝛽
  (11) 

𝜎𝜎 = (
𝛄𝛄(𝟏𝟏+𝛃𝛃)×𝒔𝒔𝒔𝒔𝒔𝒔(𝝅𝝅𝝅𝝅𝟐𝟐 )

𝛾𝛾(1+𝛽𝛽
2

)×𝛽𝛽×2(𝛽𝛽−12 )
)
1
𝛽𝛽  (12) 

 
Where u and v represent random numbers in the range from 

zero to one, and β is a constant with a value of 1.5. Based on 
this, we can determine the new position vector for the Harris 
hawk using (13). In this case, the value of Y is calculated using 
(9), while the value of Z is derived through (10). 
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𝑋𝑋(𝑡𝑡 + 1) =  �𝑌𝑌 𝑖𝑖𝑖𝑖 𝐹𝐹(𝑌𝑌) < 𝐹𝐹(𝑋𝑋(𝑡𝑡))
𝑍𝑍 𝑖𝑖𝑖𝑖 𝐹𝐹(𝑍𝑍) < 𝐹𝐹(𝑋𝑋(𝑡𝑡))  (13) 

 
• Hard Besiege with Progressive Rapid Dives 

In this situation, the rabbit lacks the energy to attempt 
escape. As a result, the Harris hawk uses a hard besiege 
strategy before launching a surprise pounce to catch and kill 
the rabbit. This strategy applies when |E|<0,5 and r<0,5 is met. 
The concept is similar to the previous strategy, with the main 
difference being that the hawk aggressively approaches the 
rabbit's average position. In this context, (14) is used to find 
the new position vector for the Harris hawk. Y dan Z can be 
obtained using (15) and (16). Here 𝑋𝑋𝑚𝑚(𝑡𝑡) represents the 
average position of all hawks in the population. LF can be 
found using (11). 

 
𝑋𝑋(𝑡𝑡 + 1) =  �𝑌𝑌 𝑖𝑖𝑖𝑖 𝐹𝐹(𝑌𝑌) < 𝐹𝐹(𝑋𝑋(𝑡𝑡))

𝑍𝑍 𝑖𝑖𝑖𝑖 𝐹𝐹(𝑍𝑍) < 𝐹𝐹(𝑋𝑋(𝑡𝑡)) (14) 

𝑌𝑌 =  𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) − 𝐸𝐸|𝐽𝐽 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) − 𝑋𝑋𝑚𝑚(𝑡𝑡)|   (15) 
𝑍𝑍 = 𝑌𝑌 + 𝑆𝑆 × 𝐿𝐿𝐿𝐿(𝐷𝐷)    (16) 
 

IV. HHO CONFIGURATION 

A. REPRESENTATION 
In this research, an individual is represented as a one-

dimensional array, with the size corresponding to the number 
of candidate students available. Each cell within the array 
contains a float value, which indicates the position of a 
candidate student within the available schedule. A higher float 
value signifies that the student will be scheduled later in the 
available time range. The float value, also referred to as the 
representational value, is used in the HHO algorithm 
calculations in this research and for fitness evaluation.  

The Slotmeter is a tool that functions to convert the 
representational number in each cell into the actual slot 
position. The Slotmeter is an object that contains two arrays: 
the Representational Value and the Actual Value. The 
Representational Value is the decimal number used in the 
HHO algorithm's calculations [13], while the Actual Value 
holds the real values, which include the date, timeslot, and 
room associated with the slot.  

To perform the conversion, the number in the cell is 
compared against all Representational Values in the 
Slotmeter. The comparison starts from the first 
Representational Value and proceeds sequentially. If a 
Representational Value is greater than the number in the cell, 
then that cell’s number is considered to correspond to the slot 
indexed by that Representational Value. The complete 
information regarding the slot, including the date, timeslot, 
and room, can be accessed through the Actual Value array, 
which holds these details for the slot at the respective index. 

   

 

Figure 4. Individual Representation 
 

 

Figure 5. Slotmeter 

 
A simple example of a Slotmeter can be seen in Figure 4. 

The Slotmeter shown in Figure 5 is configured with two days, 
two timeslots, and one room. When converting Candidate 1 
from Figure 4, the first step is to compare the value in the cell, 
which is 3.45, against the Representational Value at index 0, 
which is 3.25. Since the Representational Value at index 0 is 
smaller, the next step is to compare the value in Candidate 1's 
cell with the Representational Value at the next index, which 
is 5.50. The Representational Value at index 1 is larger than 
the number in Candidate 1's cell, so the appropriate slot for the 
value in Candidate 1's cell is the slot at index 1. The complete 
information about that slot includes the date 01-01-2020, 
timeslot number one, and room number one. 

 

𝒈𝒈𝒈𝒈𝒈𝒈 = (𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎−𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎)
𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎×𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋 ×𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋 

  (17) 

 
The gap refers to the distance between the representational 

values of the Slotmeter. The calculation of the gap in the 
Slotmeter can be found in Equation (17). The parameters 
minIndividual and maxIndividual are configuration values 
from the HHO, while maxTimeSlot, numberOfRooms, and 
numberOfDates are derived from the scheduling 
configuration.  

The Slotmeter must be created before the HHO algorithm 
can begin. The process starts by generating the Actual Value, 
which includes creating all possible slots with complete 
details, such as dates, timeslots, and rooms. After generating 
the Actual Value, the next step is to create the 
Representational Value. This involves calculating the gap 
(distance) as explained in (12). For each slot, the 
Representational Value is incremented, and the distance 
between adjacent slots is determined by the calculated gap. In 
this way, the Slotmeter becomes a tool that represents the 
conversion between the abstract representational values used 
in the HHO algorithm and the actual values, which contain 
detailed information such as dates, timeslots, and rooms. This 
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Slotmeter is crucial for understanding how the abstract 
representation of values can be linked to actual slots within the 
context of specific scheduling problems. 

B. FITNESS  
The fitness system within this scheduling program adopts a 

cost-based approach, where each violation of a rule or 
constraint results in an increase in the cost or performance 
value of the individual. Consequently, individuals with lower 
fitness or cost values are deemed superior in this context. 
Constraints, often referred to as "constraints," serve as 
guidelines or rules that must not be violated, or at the very 
least, should be adhered to as closely as possible. These 
constraints can be categorized into two types: Hard 
Constraints and Soft Constraints. The weights representing the 
significance of each rule in the scheduling program can be 
found in Table 1.  

 
TABLE I 

FITNESS WEIGHT 

Constraint Name Constraint Type Weight 
SELF_CONFLICT Hard 500 
DOSEN_SELF_CONFLICT Hard 500 
UJIAN_CONFLICT Hard 100 
AJAR_CONFLICT Hard 100 
HADIR_CONFLICT Hard 250 
DAY_USED Soft 20 
REPEATED_CONFLICT Soft 50 

 
In this context, fit(X) represents the fitness value of hawk 

X. Constraint[n] denotes the total violations for constraint n, 
where n ranges from 1 to 7 (18). Weight[n] signifies the weight 
assigned to constraint n. The methodology for calculating the 
total weight of violations is explained as follows. 

 
𝑓𝑓𝑓𝑓𝑓𝑓(𝑋𝑋) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[0] ∗  𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡[0] + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[1] ∗ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡[1] +

⋯  + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[6] ∗ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡[6]    (18) 

C. HARD CONSTRAINT 
Hard Constraints refer to the limitations or rules that must 

be strictly adhered to and cannot be violated. The 
implementation of Hard Constraints within the Harris Hawks 
Optimization algorithm involves assigning a high fitness cost 
to individuals that breach specific rules. This approach 
encourages the HHO algorithm to avoid violations of these 
rules. By imposing a significant cost, the HHO algorithm is 
incentivized to produce solutions that comply with the 
established guidelines. In the context of this scheduling 
program, there are five rules identified as Hard Constraints: 
1. SELF_CONFLICT: Candidates must not occupy the 

same slot. This constraint prevents a candidate's defense 
schedule from appearing more than once in the same 
schedule. 

2. DOSEN_SELF_CONFLICT: Participants in the defense 
must not have the same supervising professor, co-

supervisor, or examiners as other participants in the same 
schedule. 

3. HADIR_CONFLICT: The defense schedule for 
professors must fall within their working hours. 

4. AJAR_CONFLICT: A professor must not be scheduled 
to teach during the defense schedule. 

5. UJIAN_CONFLICT: There must be no overlap between 
the professor's schedule and the exam schedule (e.g., 
mid-term and final exams). 

D. SOFT CONSTRAINT 
Soft Constraints are limitations or rules that may be violated 

if conditions do not allow adherence, yet they should ideally 
be followed or minimized in violation. The fitness value 
assigned when such violations occur is lower than that for 
Hard Constraints. This design encourages the HHO algorithm 
to strive to minimize breaches of these rules while still 
permitting a degree of violation at a lower level. By assigning 
a lower cost to Soft Constraints, the HHO algorithm prioritizes 
compliance with Hard Constraints over Soft Constraints. In 
the context of this scheduling program, there are two rules 
classified as Soft Constraints: 
1. DAY_USED: The number of days in the schedule or 

individual should be minimized. This rule implies that a 
violation will occur for each day utilized in a hawk's 
schedule. The constraint suggests that the generated 
defense schedule should have a shorter duration. 
Emphasis on this constraint aims to encourage the HHO 
algorithm to prefer schedules that utilize fewer days 
rather than those that extend over more days. 

2. REPEATED_CONFLICT: Professors should not 
supervise or examine more than three consecutive times, 
either in examination or guidance roles. This constraint 
is implemented to ensure that professors have adequate 
breaks between their examination and supervision 
duties.  

E. MIN MAX NORMALIZATION 
MinMax normalization operates by transforming cell 

values into a specified range while preserving the differences 
among those values. Maintaining these differences is crucial 
because the optimal solution in this context is an individual 
with diverse cell values. By applying MinMax normalization 
(19), the values of a hawk do not tend to converge toward 
either the minimum or maximum bounds of the individual. An 
example of Individual Representation can be seen in Figure 6. 

 
𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑋𝑋−𝑜𝑜𝑜𝑜𝑜𝑜_min (ℎ𝑎𝑎𝑎𝑎𝑎𝑎)

old_max(ℎ𝑎𝑎𝑎𝑎𝑎𝑎)−𝑜𝑜𝑜𝑜𝑜𝑜_min (ℎ𝑎𝑎𝑎𝑎𝑎𝑎)
 × (𝑛𝑛𝑛𝑛𝑛𝑛_𝑚𝑚𝑚𝑚𝑚𝑚 −

𝑛𝑛𝑛𝑛𝑛𝑛_min (ℎ𝑎𝑎𝑎𝑎𝑎𝑎)) + 𝑛𝑛𝑛𝑛𝑛𝑛_ min(ℎ𝑎𝑎𝑎𝑎𝑎𝑎) (19) 

 



 Kevin Setiono, et. al.: Thesis Defense Scheduling Optimization… (October 2024) 

VOLUME 06, No 02, 2024 DOI: 10.52985/insyst.v6i2.361 74 

 

Figure 6. Individual Representation 
 
MinMax normalization is applied within the Harris Hawk 

Optimization (HHO) algorithm during the translation or 

conversion from float representation to schedule 
representation. Consequently, when fitness calculations are 
performed, the information contained in the individual 
remains relatively consistent with its pre-normalization state. 
The MinMax normalization process for a single individual 
uses (19). 

V. THESIS DEFENSE SCHEDULING 
In this scheduling system, specific inputs are required for 

effective operation. All inputs will be entered in the form of an 
Excel file. The content of the Excel file will be presented in 
this study in tabular form.  

 
 

 

TABLE II 
CANDIDATE LIST 

 

 

 

 

 

 

 
The XLSX input file consists of four sheets: the candidate 

list, class schedule, examination schedule, and attendance 
schedule. The "Candidate List" sheet in Table 2 contains 
information about the students who have registered for their 
thesis defenses at the Institut Sains dan Teknologi Terpadu 
Surabaya. In addition to details about the candidates, this 
worksheet also includes data regarding the supervising 
lecturers, co-supervisors (if applicable), and three examiners. 
If there is no co-supervisor, the corresponding column will be 
filled with the text “[EMPTY].” 

The Class Schedule sheet includes information such as the 
name of the lecturer, time, course title, number of credit hours 
(with one credit hour assumed to be 50 minutes according to 
the ISTTS academic guidelines), and the day of the week. 
Similarly, the Examination Schedule sheet contains fields 
such as the lecturer's name, course title, date, time, and 
whether it pertains to the mid-term (UTS) or final exam 
(UAS).  

  
TABLE III 

ATTENDANCE SCHEDULE 

Constraint Name Attendance Schedule 
Kevin Setiono, 
S.Kom.                         
 

09:00-13:00,08:00-17:00,08:00-
17:00,08:00-17:00,09:00-13:00 
 

Mikhael 
Setiawan, 
S.Kom.                      
 

08:00-17:00,08:00-17:00,08:00-
17:00,08:00-17:00,08:00-17:00 
 

Evan Kusuma 
Susanto, 
S.Kom.                   
 

08:00-17:00,08:00-17:00,08:00-
17:00,08:00-17:00,08:00-17:00 
 

 
The five attendance times indicate the arrival and departure 

times of lecturers in sequential order from Monday to Friday. 
Each entry in the attendance schedule is separated by the 
character "-", representing the check-in and check-out times. 
If the attendance schedule includes more than five entries, only 
the first five entries will be utilized. An example of the 
attendance schedule can be found in Table 3. 

 

VI. EXPERIMENT RESULTS 
Experiments were conducted to test the optimal HHO 

configuration and fitness weights, showed in Table 4, in 
scheduling thesis defenses at the Institut Sains dan Teknologi 
Terpadu Surabaya. In addition to configuration trials, testing 
was performed on all available schedule data. The 
implementation of multiprocessing was tested on the 

NRP SUPERVISING 
LECTURER 

CO-
SUPERVISOR EXAMINER 1 EXAMINER 2 EXAMINER 3 

219210615 
 

Hendrawan 
Armanto, S.Kom., 
M.Kom.             
 

[ EMPTY ]                                      
 

Yosi Kristian, Dr., 
S.Kom., M.Kom.            

Lukman Zaman 
PCSW, Dr., 
S.Kom., M.Kom.        

Arya Tandy 
Hermawan, Ir., 
M.T.                

219210615 
 

Hendrawan 
Armanto, S.Kom., 
M.Kom.             
 

[ EMPTY ]                                      
 

Yosi Kristian, Dr., 
S.Kom., M.Kom.            

Lukman Zaman 
PCSW, Dr., 
S.Kom., M.Kom.        

Arya Tandy 
Hermawan, Ir., 
M.T.                

219210615 
 

Hendrawan 
Armanto, S.Kom., 
M.Kom.             
 

[ EMPTY ]                                      
 

Yosi Kristian, Dr., 
S.Kom., M.Kom.            

Lukman Zaman 
PCSW, Dr., 
S.Kom., M.Kom.        

Arya Tandy 
Hermawan, Ir., 
M.T.                
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performance of the HHO algorithm. Each weight would be 
tested a minimum of five times. 

 
TABLE IV 

TEST FITNESS WEIGHTS 

Test Constraint Name 1 2 3 
SELF_CONFLICT 200 1000 500 
DOSEN_SELF_CONFLICT 200 1000 500 
HADIR 200 500 250 
UJIAN 200 500 100 
AJAR 200 500 100 
DAY 100 50 20 
REPEATED 100 50 50 
 

TABLE V 
TOTAL CONFLICT AND CONFLICT WEIGHT 

Test Fitness Number Total 
Conflict 

Total Conflict 
Weight 

F1R1 33 5600 
F1R2 47 8200 
F1R3 39 6600 
F1R4 47 8200 
F1R5 36 6200 
F2R1 25 7100 
F2R2 42 16550 
F2R3 53 20650 
F2R4 48 18600 
F2R5 60 25150 
F3R1 29 2080 
F3R2 29 2390 
F3R3 36 3790 
F3R4 29 2410 
F3R5 33 4400 

 
 

 

Figure 7. HHO Trial Graph for Thesis Scheduling with Three Types of 
Fitness Weights and Five Runs for Each Fitness Type 

 
In the experiment for testing fitness weights, each 

configuration was executed five times as written in Table 5, 
and the best and worst outcomes from all trials were recorded 

as in Figure 7. The success of the weight trials was measured 
based on the non-violation of hard constraints. Thus, the 
evaluation of the weight configuration was based on the 
number of hard constraint violations that occurred. A smaller 
number of hard constraint violations indicates a better weight 
configuration. 

In the first fitness trial, the first run yielded the best result 
with a total of 23 hard constraint violations. These violations 
included 10 violations of attendance rules, 0 violations of 
exam rules, and 13 violations of teaching or lecture rules. The 
scheduling outcome from the first trial resulted in a schedule 
lasting 10 days. 

In the second fitness trial, the first run also achieved the best 
outcome with 13 hard constraint violations: 1 attendance rule 
violation and 12 teaching rule violations. The schedule in this 
trial lasted 12 days. 

The third fitness trial, specifically the third run, produced 
the best result. The first trial of this configuration generated a 
total of 15 hard constraint violations, consisting of 2 violations 
of attendance rules and 13 violations of teaching rules. The 
schedule from this trial lasted 14 days. 

In the third configuration experiment, it was observed that 
the best result from five trials did not yield a more optimal 
schedule compared to the best outcome from the second 
configuration trial. Despite the differences resulting in less 
favorable outcomes, this can be considered as a matter of luck. 
Additionally, the BAA administrator responsible for creating 
the thesis scheduling at ISTTS during this research indicated 
that the constraints related to attendance scheduling are of 
higher importance than those concerning lecture or exam 
scheduling. Therefore, the third configuration will be adopted 
as the final configuration in this experiment.. 

To enable the HHO algorithm to produce optimal results, 
appropriate configurations are essential. Therefore, trials were 
conducted to determine the correct HHO configuration. The 
tested configurations included maximum iterations, the 
number of hawks, minimum individuals, and maximum 
individuals. The evaluation of the configurations was 
performed using (20).  

  
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 1 − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
   (20) 

 

The configuration trial scores were calculated using 
Formula 14. The scores range from 0 to 1, where 0 indicates 
the worst outcome and 1 represents the best possible result. 
However, in the context of the HHO algorithm, achieving a 
score of 1 is not feasible due to the day constraint. Since the 
schedule must always account for the use of days, this 
constraint is inevitably violated. Seven configurations were 
tested to identify the optimal setup, refer to Table 6. Below is 
a description of the trials conducted. 
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TABLE VI 
TOTAL CONFLICT DAN CONFLICT WEIGHT 

No Min 
Individual 

Max 
Individual 

Max 
Iteration 

Starting 
Individual 

1 1 10 100 20 
2 1 500 100 20 
3 1 1000 100 20 
4 1 1000 100 50 
5 1 1000 500 100 
6 1 1000 500 200 
7 1 1000 500 500 
 

TABLE VII 
CONFIGURATION TESTS AVERAGE RESULTS 

Config 
Number 

Ending 
Iteration 

Final 
Fitness 

Time 
Elapsed Score 

1 100 3093 1,073,666 0,983633 
2 100 3223 1.364 0,983281 
3 99 3470 1324 0,981542 
4 100 3214 3.214,333 0,980957 
5 410,666 2306 19.302,333 0,987730 
6 428,666 1450 27.688,333 0,992287 
7 100 1670 55.614,333 0,991117 
 
To review the final fitness values from all trials, refer to 

Table 7. A comparison of configurations one, two, and three 
indicates that the parameters min_individual and 
max_individual had minimal influence on the final fitness 
value. In contrast, testing the number of individuals and 
iteration parameters (configurations four through seven) led to 
a significant reduction in hard constraint violations and an 
improvement in the final fitness value between configurations 
three and four. Configuration seven achieved the best result 
after increasing both parameters. The fitness results from the 
configuration trials are shown in Figure 8. 

 

 

Figure 8. Fitness Results of Configuration Trials 
 
In configuration six, the HHO algorithm converged 

between iterations 400 and 450. Consequently, in 
configuration seven, only the number of individuals was 
increased. Despite this modification, configuration seven did 
not yield a higher-quality schedule. Therefore, configuration 
six was determined to be the optimal setup. 

TABLE VIII 
TOTAL CONFLICT DAN CONFLICT WEIGHT 

No Process Type Time Elapsed (Seconds) 
1 1 1874 
2 1 1128 

 
For the multiprocessing experiment, data from the second 

period of the odd semester in the 2020/2021 academic year 
were utilized, involving 35 candidates. The experiment was 
conducted once for each type of process. The schedule 
spanned two weeks, with four timeslots and four rooms. The 
HHO setup included a maximum of 100 iterations and 20 
hawks. The multiprocessing configuration employed four 
workers. The limited number of iterations ensured that the 
HHO algorithm would not terminate prematurely due to 
convergence, thus minimizing its impact on runtime. The trial 
results (see Table 8) indicate that, with a linear process, the 
program required 1874 seconds (approximately 31 minutes). 
In contrast, with multiprocessing, the task was completed in 
1128 seconds (approximately 18.8 minutes), demonstrating a 
performance improvement of about 39%. 

 

VII. CONCLUSION 
The scheduling of thesis defenses at Institut Sains dan 

Teknologi Terpadu Surabaya, using the Harris Hawk 
Optimization (HHO) method, successfully produced a 
schedule with a hard constraint violation rate of less than 10%. 
HHO has proven to be an effective approach for solving time 
scheduling problems, especially due to its integrated 
exploration and exploitation phases, as well as its phase 
transition mechanism. Trials demonstrated that HHO could 
schedule approximately 90% of the candidates without 
significant hard constraint violations. Additionally, 
implementing multiprocessing in the HHO algorithm, 
particularly in the fitness calculation process, improved the 
algorithm's speed by reducing execution time by 39%. 
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