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ABSTRACT Some current virtual assistant products such as Alexa, Siri and Google Home facilitate features 
to control smart home devices through voice input, which has become increasingly popular in recent years. 
In addition to voice input, smart home devices can also be monitored and controlled through smartphones or 
computers using applications that provide users with flexibility. However, both control systems are less 
efficient, as they consume time and voice input utilization may sometimes not be recognized in crowded 
conditions. Therefore, this research introduces an application to recognize real-time hand gestures and utilize 
them for a new control system that provides time and energy efficiency. This application processes images 
using the Mediapipe framework, generating hand landmark outputs. These landmark outputs are utilized to 
determine the combination of raised or lowered fingers, which is then used to control smart home devices. 
The application is developed with ESP32 and ESP01s modules as data receivers from gesture recognition, 
and ESP32-CAM for image acquisition. Meanwhile, the gesture recognition computation process is executed 
on a Raspberry Pi 3 Model B. The gesture recognition application achieves good accuracy at 88%, but may 
experience occasional failures for certain gestures. However, the response time generated by the smart home 
control system is still relatively long, averaging 7.88 seconds. 
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I. INTRODUCTION 
This Smart home is a system designed to control and 

automate household electronic devices intelligently using 
integrated sensors. There are numerous benefits offered by 
smart home devices in providing solutions for both routine 
and specific human needs. Research on the control system of 
smart home devices for individuals with physical disabilities 
[1], [2] states that smart home technology facilitates physical 
disabilities in managing their household devices. 

Control over smart home devices can be achieved through 
the use of current virtual assistant products [3], [4]. However, 
according to Mtshali & Khubisa (2019) controlling smart 
home devices using virtual assistants is a complex, 
complicated, and expensive solution for individuals with 
physical disabilities or the elderly. These virtual assistants 
are also vulnerable to spoofing attacks [5]. In a study on the 
design of a smart home as an IoT application based on Voice 
Recognition and Arduino [6], failures were also found in 
recognizing voice input instructions as controllers for smart 
home devices. Voice recognition failures can be time-
consuming, making it less efficient.  

In noisy environmental conditions, various noises can 
interfere the voice recognition capabilities of virtual 
assistants. These noises typically originate from sounds not 
intended to control smart home devices. This issue can 
hinder the smooth operation of control systems and also 
result in time consuming. 

Research on hand gesture recognition to control household 
electronic devices was conducted [7]. The research design 
utilized IMU sensors to obtain accelerometer data, which 
was processed and classified into 4 hand gestures: up, down, 
left, and right. The results of gesture recognition were then 
used to trigger the control of electronic devices in the home.  

Another study on smart home control devices using hand 
gesture recognition was also carried out [8]. With depth 
camera acquisition and the application of the Hidden Markov 
Model (HMM) method for gesture recognition, an average 
recognition rate of 98.50% was achieved. However, the 
control device was limited to only 4 types of hand gestures.  

In previous studies [9], the gesture recognition system that 
utilized input from the ADPS-9960 sensor was limited to 
basic swipe gestures: left, right, up, and down. Instructions 
were executed using upward and downward hand 
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movements to navigate menus on an LCD. This research 
provides a solution to the time consuming and labor-
intensive process of menu selection. By employing camera-
based gesture recognition, this approach overcomes the 
limitations in the variety of gestures that can be recognized 
compared to those with the ADPS-9960 sensor.  

Therefore, this research introduces a smart home control 
device utilizing hand gesture recognition as its trigger. The 
utilization of hand gesture recognition is expected to address 
various issues found in previous research. This approach is 
also giving more advantage as it does not need any sensors 
or attachments on our hands, offering more seamless and 
convenient user experiences [10], [11]. Instead of relying on 
traditional manual switches or remote controls, users can 
execute simple gestures to operate lighting, temperature 
settings, and other devices, allowing for quicker and more 
intuitive control over home automation systems [12]. This 
method reduces the need for physical contact and movement, 
saving energy typically used by conventional methods and 
diminishing the time taken to perform routine tasks. 

 
II. APPLICATION DESIGN 

As shown in Figure 1, the application flow begins with the 
image acquisition process. In real-time image processing, the 
term "image" refers to the frame unit acquired using the 
camera. This image is then used as input for the hand gesture 
recognition model. The output from hand gesture recognition 
is subsequently employed to trigger the control of smart home 
devices. 

 
Figure 1.   Application Flowchart 

A. IMAGE ACQUISITION 
Image acquisition is performed on the ESP32-CAM using 

the OV2640 camera module. Upon activation, the ESP32-
CAM will automatically create a web server and send real-
time image data to the web server. The process of sending 
image data to the web server and creating the web server itself 
utilizes the built-in code or sketch from the ESP32 add-on in 
the Arduino IDE called "cameraWebServer". On this web 
server, the resolution and image quality can be adjusted, and 

there are also features to apply effects to the image, such as 
Grayscale, Binary, and others. 

B. HAND GESTURE RECOGNITION 
The hand gesture recognition process is executed by 

inferencing each frame captured by the camera in real-time 
into the Mediapipe model. Mediapipe is a versatile 
framework developed by Google, provides a suite of image 
processing functions that facilitate the accurate detection and 
recognition of hand gestures as they occur. This real-time 
processing allows the system to provide instantaneous 
feedback based on the gestures it recognizes. 

Before hand gestures can be recognized, the input of the 
hand image is initially detected using the Palm Detection 
model from Mediapipe as shown in Figure 2. This model is 
created using the Single Shot Detector (SSD) architecture 
and Convolutional Neural Network (CNN) method [13]. The 
output of the detection is a bounding box stored in the values 
of x-minimum, y-minimum, x-maximum, and y-maximum, 
representing the coordinate values of the detection box on 
the image. 

 

 
Figure 2.   Hand Gesture Recognition Flowchart 

The image is then cropped based on the bounding box 
values and enters the hand landmark prediction model. Hand 
landmark refers to the points of joints or the framework of 
the palm, as shown in Figure 3. For example, 
INDEX_FINGER_MCP represents the coordinate point of 
the metacarpophalangeal (MCP) joint on the index finger. 
The output of the hand landmark prediction utilized for the 
subsequent process includes the x and y coordinates of each 
landmark on the image. 

 
Figure 3.   Hand Landmarks 

The landmark coordinates in Figure 3 are utilized to 
determine whether each finger is raised or lowered. For 
example, if the y-coordinate of the finger's TIP in the image 
is smaller or positioned above the MCP, the finger is 
interpreted as raised. Each raised finger is assigned a value 
of 1, while the lowered ones are assigned a value of 0. These 
values of 0 and 1 represent the raised and lowered states of 
the 5 fingers on both hands, as illustrated in Figure 4. By 
utilizing these values for the 5 fingers, a total of 2^5 
combinations or 32 types of static hand gestures can be 
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formed. In this study, only 5 of the 32 hand gestures were 
tested to measure the response time of the system. 

 

Figure 4.   Gesture Illustration 

C. SMART HOME DEVICES CONTROLLER 
In Figure 5, the ESP32-CAM is connected to the access 

point created by the Raspberry Pi and sends image data to 
the web server it establishes. Subsequently, the Raspberry Pi 
accesses this data through the web server and uses it as input 
for the gesture recognition model. The Raspberry Pi serves 
as the main data processing center, handling image 
processing, inferring to the gesture recognition model, and 
providing output data in the form of gesture information. 
Additionally, the Raspberry Pi opens an access point, 
allowing other components to connect to it. 

The Raspberry Pi establishes a web server so that after the 
image or frame is inferred through the model, the output 
results from the model are sent to the web server created by 
the Raspberry Pi. The inference process and web server 
operation are executed concurrently using the threading 
library in the Python programming language, while the 
creation of the web server utilizes the Flask library. Both 
processes need to run simultaneously for the web server to 
operate and update data while the Raspberry Pi processes 
image data. The Gesture Output on the web server is 
accessed by the ESP-01S and ESP32, serving as triggers to 
control devices. 

 
Figure 5.   System Illustration 

1) CONTROLLER USING RELAY 
The ESP-01S is utilized to access gesture data and control 

the relay based on the received gesture information. The 
ESP-01S is connected to the Raspberry Pi's access point and 
retrieves gesture data from the Raspberry Pi's web server. If 
the gesture data corresponds to instructions to turn on or off 
the light, the relay will operate accordingly by opening or 
closing the electrical circuit. Figure 6 illustrates the 
configuration scheme of the controller using a relay and 
ESP-01S. 

 
Figure 6.   Installation Scheme of ESP01S and Relay 

2) CONTROLLER USING IR TRANSMITTER 
One limitation of the relay in this application is its 

capability to only open and close the electrical circuit, 
allowing instructions for turning on or off only. To address 
this issue, an infrared (IR) transmitter is employed. Various 
household electronic devices such as ACs, TVs, and 
projectors use infrared remote controls to execute additional 
instructions like adjusting temperature, changing channels, 
and controlling volume. By replicating these functions, the 
given instructions can be diverse and not limited to just on or 
off. However, the use of the infrared transmitter is 
constrained by its limited range, directional emission that 
must be in line, and its inability to penetrate objects. 

To mimic the operation of a remote control, the infrared 
signals emitted by the remote based on instructions are 
recorded and initially noted using the IR Receiver HS1838 
module. Remote instruction signals are in hexadecimal form. 
For example, the signal to turn on the AC is '81C08F70 
C1AA09F6'. Each hexadecimal character represents 4 bits of 
digital signal transmitted at a frequency of 38 kHz. For 
instance, the character 'A' represents the value '0101,' while 
'9' represents the value '1001' in the digital signal. When the 
infrared is emitted from the remote, the signal received by 
the receiver or AC is its inverse. For example, if the 
transmitted signal value is '11001001,' the signal received by 
the receiver is '10010011.' Therefore, after recording the 
code signal for each instruction, the code is reversed or 
converted. If the initially obtained signal code was 
'81C08F70 C1AA09F6' during recording, the original signal 
is '6F905583 0EF10381.' This original signal is what the 
infrared transmitter will emit when intending to turn on the 
AC. 
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Figure 7.   Installation Scheme of IR Transmitter and Receiver 

 
The Infrared transmitter is connected to the ESP32. The 

ESP32 is linked to the Raspberry Pi's access point connection 
to access gesture data from the Raspberry Pi's web server. 
When the gesture data meets the conditions to execute 
specific instructions, the infrared transmitter will emit an 
infrared signal to the target device and execute instructions 
based on the hexadecimal code of the previously recorded 
original signal. As illustrated in Figure 7, there is an IR 
receiver connected to Arduino UNO to validate or 
crosscheck the signal code emitted by the transmitter, 
ensuring there are no errors in the code. 

D. APPLICATION TESTING 
The testing phase involves designing a prototype 

simulation of the application's operation. The simulation is 
created on a smaller scale compared to a typical smart home 
system, with the aim of depicting the real system's 
conditions. Additionally, this simulation is used to test the 
solutions implemented for previously identified issues and 
the smooth functioning of additional features. Two aspects 
are tested in the formed simulation: response time testing and 
gesture recognition accuracy testing. 

Response time testing involves recording the time from 
when a gesture is recognized on the Raspberry Pi until the 
instructed device receives a response. The testing is 
conducted 10 times for each gesture and measured in 
seconds. Meanwhile, accuracy is tested using a Confusion 
Matrix. A Confusion Matrix is a method for calculating 
accuracy, precision, and recall values in a classification 
system [14]. 

 
Figure 8. Confusion Matrix Example 

There are four terms to calculate performance in the 
Confusion Matrix, namely TP, FN, FP, and TN as shown in 
Figure 8. TP or True Positive is the number of data predicted 
as class 1, and the actual result is also class 1. FN or False 
Negative is the number of data predicted as class 0, but the 
actual result is class 1. FP or False Positive is the number of 
data predicted as class 1, but the actual result is class 0. 
Meanwhile, TN or True Negative is the number of data 
predicted as class 0, and the actual result is also class 0 [15]. 
Equation (1) is used to measure the number of cases 
predicted correctly compared to the overall cases. Equation 
(2) is a measurement that indicates how accurate the 
prediction is for the positive class. The precision value is 
obtained from the ratio of True Positive to the total positive 
cases. Equation (3) is used to measure the ratio of True 
Positive to the total actual positive cases. 

Accuracy =  TP+TN
TP+TN+FP+FN

                 (1) 

Precision =  TP
FP+TP

                             (2) 

Recall = TP
FN+TP

                              (3) 

 
III. RESULT AND DISCUSSIONS 

The camera resolution for image acquisition is set to VGA 
resolution, which is 640x480 pixels. The resulting frames are 
obtained in the .JPEG file format with a file size ranging 
from approximately 8000 to 12,000 bytes or 8-12 KB. 
Raspberry Pi receives frame data from ESP32-CAM with an 
average frames per second (fps) of 52.6, using 2 frame 
buffers. Frame buffer refers to additional memory for storing 
graphic information that has not been displayed on the 
screen. The image data is then sent to the web server created 
by ESP32-CAM. This data can be accessed using the IP 
address of ESP32-CAM. 

TABLE I 
INFRARED SIGNAL RESULTS 

Devices Command Signal Code Converted 
Signal 

Projector Power 
On/Off 

81C08F70 
C1AA09F6 

03810EF1 
55836F90 

Freeze/ 
Unfreeze 

81C08F70 
C1AA49B6 

03810EF1 
55836D92 

AC Power On 96BFBCDC 
CEC65E15 

FD693B3D 
6373A87A 

Power Off 96BFBCDC 
9A664E43 

FD693B3D 
6659C272 

 
Table 1 illustrates the infrared signals successfully 

recorded using an IR Receiver and emitted using an IR 
Transmitter. Some signals from different brand AC remotes 
were unable to be recorded because the hexadecimal codes 
emitted for one instruction and one device varied. To address 
this issue, attempts were made to record the pulse width and 
retransmit it, but the results were still unsuccessful. 
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Figure 9.   Hand gestures and its commands 

 
With the developed application, five recognizable hand 

gestures have been formed to execute various instructions. 
Among the executable instructions are turning on and off the 
lights, projector, AC, and freezing/unfreezing the projector, 
as illustrated in Figure 9. The number 1 represents raised 
fingers from right to left on the right hand; for example, the 
gesture data '01100' signifies that the index and middle 
fingers are raised. The output of this gesture data is sent 
through the web server within the local network, making it 
accessible to both ESP-01s and ESP32. Figure 10 
demonstrates an example of using the application for 
gestures 11111 and 10001. The executed instructions for the 
performed gestures were successful. 

 

 

Figure 10.   Example of Application Usage 
Testing was conducted under specified camera resolution, 

distance, and lighting conditions. The distance between the 
camera and the hand was set at 1 meter. Meanwhile, the 
lighting conditions were measured using a lux meter to 
measure the light intensity. Measurements recorded in the 
area where hand movements were tested showed a light 
intensity of 245 lux. 

Variations in lighting conditions, either darker or brighter, 
can significantly affect the detail captured in the hand's 
image, thereby making gestures more difficult to recognize. 
The distance between the hand and the camera also plays a 
crucial role for the system to detect hand gestures. Therefore, 
further testing on both lighting and distance factors is 
necessary to optimize the recognition system's performance.   

A. ACCURACY TESTING RESULTS 
As shown in Figure 11, the hand gesture recognition system 

achieved a good accuracy of 88%. However, the gesture 
00110 frequently experiences prediction failures and is often 
misclassified as 01100, with a precision value of 0.6. This 
occurrence may be attributed to instances where the hand is 
far from the camera and has a relatively low resolution. In such 
cases, the texture or shape of the hand may not be clearly 

recognizable, leading to inaccurate landmark outputs. Some 
similar gestures can be recognized accurately at short 
distances to handle misclassification, but this may reduce the 
user experience. Implementing higher-resolution cameras that 
capture more detailed images could improve the system's 
ability to recognize differences between similar gestures at 
long distances.  

 

Figure 11.   Hand gestures and its commands 

B. RESPONSE TIME TESTING RESULTS 
The response speed performance in controlling smart home 

devices is still below average. The average time required from 
gesturing to the camera until the smart home device lights up 
entirely is 7.88 seconds. The average response time between 
using relay and infrared also does not indicate a significant 
difference, with a minimal average speed difference (0.28 
seconds) and a comparable difference in standard deviation 
(0.07 seconds). 

TABLE II 
RESPONSE TIME TESTING RESULTS 

Response time in seconds 
No 11111 

(Relay) 
10001 

(Relay) 
00110 
(IR) 

00001 
(IR) 

01100 
(IR) 

1 9.62 10.08 11.03 9.56 11.43 

2 10.63 9.89 9.58 13.42 10.24 

3 11.28 10.8 9.74 9.09 8.4 
4 10.42 9.21 10.27 7.79 7.97 
5 7.98 8.09 9.62 11.04 08.87 
6 5.2 5.27 7.79 6.62 5.98 
7 5.78 6 6.68 5.65 4.82 

8 5.95 5.31 5.83 6.47 6.71 

9 6.97 5.15 5.87 5.4 6.09 

10 5.83 5.35 5.17 6.42 7.18 

Mean 7.74 8.02 

7.88 

Standard 
Deviation 

2.27 2.2 

2.24 

The generated deviation indicates that the speed 
performance of the smart home controller is still fluctuating. 
As observed in Table 2, numbers 1 to 5 and 6 to 10, the 

Prediction 

A
ct

ua
l 

Accuracy 



 Stanley A. Dewangga, et. al.: Implementation of Hand Gesture… (October 2024) 

VOLUME 06, No 02, 2024 DOI: 10.52985/insyst.v6i2.372 68 

resulting response times show a significant difference with 
an average gap of 3.86. When the program is running, the 
number of frames per second captured by the Raspberry Pi 
drastically decreases from the initial 52.6 fps to around 1 to 
3 fps. This is because each frame captured by the camera is 
processed and inferred into the model before capturing the 
next frame. Therefore, the computational speed of the 
Raspberry Pi in processing and inferring images into the 
model remains inconsistent and inefficient. 

 
IV. CONCLUSION 

The smart home device control system developed has an 
average overall response time of 7.88 seconds from 10 tests 
for each gesture. This response time is still too long if applied 
in product form. The prolonged response time is due to the 
computational limitations of the Raspberry Pi 3 Model B in 
handling images and inferring them into the gesture 
recognition model. Therefore, this research still cannot solve 
the issues of time and energy efficiency identified in the 
previous study. However, this research has the potential to 
be improved and can address these issues by changing the 
central computing unit to another small computer with 
higher computational speed. 

The hand gesture recognition system achieved an overall 
accuracy of 88%, which is satisfactory. However, some 
gesture recognition errors still occur, and certain gestures 
remain challenging to use. The system can recognize up to 
32 gestures, but this study only utilized 5, indicating that the 
limitations in the number of recognized gestures in the 
previous research can be addressed with some improvements 
in this study. 

Based on the experiments and tests conducted, there are 
several suggestions that can be applied to enhance and 
further develop this research, including: 
1. Replacing the Raspberry Pi 3 Model B as the main 

computing unit with a faster computer for image 
processing. This decision should also consider the 
amount of input to be processed on that computing 
resource, as multiple inputs may be required for more 
than one room. 

2. Considering the option of not running gesture 
recognition in real-time but providing an interface 
feature for gesture recording mode, making the power 
consumption more efficient. 

3. Implementing a feature to record and store infrared 
signals from the original remote and being able to emit 
them when specific instructions are called. 
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