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ABSTRACT Mango plants (Mangifera indica) are a significant export commodity in the horticultural 
industry, offering numerous nutritional and economic benefits. They are rich in essential micronutrients, 
vitamins, and phytochemicals, contributing to their high demand globally. However, mango plants are 
susceptible to various diseases that can severely impact their yield and quality. These diseases pose a 
challenge to mango farmers, many of whom struggle to identify and treat them effectively, leading to potential 
harvest failures. This study aims to address this challenge by implementing a Deep Learning approach to 
classify diseases in mango leaves. Specifically, the research utilizes a Convolutional Neural Network (CNN) 
with DenseNet architecture, known for its efficiency in image classification tasks. The study incorporates 
Contrast Limited Adaptive Histogram Equalization (CLAHE) for image preprocessing to enhance detail and 
improve the model’s performance. Transfer Learning is utilized to optimize the DenseNet model, leveraging 
a pre-trained model to achieve high accuracy even with a relatively small dataset. The dataset used in this 
research comprises 4000 labeled images of mango leaves, covering seven disease categories and healthy 
leaves. These images include common diseases such as Anthracnose, Dieback, Powdery Mildew, Red Rust, 
Cutting Weevil, Bacterial Canker, and Sooty Mould. The DenseNet model achieved an overall accuracy of 
99.5% in classifying mango leaf diseases.  

KEYWORDS Convolutional Neural Network, DenseNet Architecture, Mango Leaf Disease, Transfer 
Learning

I. INTRODUCTION 
Mango plants (Mangifera indica) are highly valued for 

their nutritional and economic benefits. Native to India, 
mangoes are now widely cultivated in Southeast Asia, 
including Indonesia and Malaysia [1]. Mangoes are a popular 
export commodity, especially from tropical regions like 
Indonesia, which is one of the largest producers globally. 
The economic value of mangoes is significant and growing, 
presenting opportunities for international competition [2]. 

Mangoes are rich in essential vitamins and minerals, 
making them a crucial part of the diet for many people. They 
provide energy, dietary fiber, carbohydrates, protein, fat, and 
phenolic compounds. Mangoes are a source of various 
micronutrients, vitamins, and phytochemicals, which are 
essential for human health [3]. Mangoes also contain 
vitamins such as vitamin C, vitamin A, and vitamin E, which 
contribute to health benefits [4]. The economic value of 
mangoes is substantial, with the fruit being a significant 
export commodity in the horticultural industry [2]. The 
demand for mangoes continues to grow, driven by their 

nutritional benefits and popularity as a fresh fruit and 
ingredient in various food products [5]. 

Despite their benefits, mango plants are susceptible to 
various diseases that can significantly impact their yield and 
quality. These diseases pose a challenge to mango farmers, 
many of whom struggle to identify and treat them effectively 
[6]. The presence of diseases in mango plants can lead to 
harvest failures, affecting both the quantity and quality of the 
produce.  

Some of the common diseases affecting mango plants 
include Anthracnose, Dieback, Powdery Mildew, Red Rust, 
Cutting Weevil, Bacterial Canker, Sooty Mould, Gall 
Midges, and others [7]. Anthracnose is a fruit rot disease 
caused by the fungus Colleto-trichumspt [8]. Dieback is 
caused by the fungus Lasiodiplodia theobromae, this disease 
affects the branches and leaves turning brown, drying out, 
and falling off [7]. Powdery Mildew is caused by the fungus 
Oidium mangiferae. This disease affects the leaves, flowers, 
and young fruits, leading to reduced photosynthesis and fruit 
quality [9]. Red Rust is a parasitic algae, that causes reddish 
spots on the leaves and fruits [10]. Cutting Weevil is a 
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destructive insect that attacks mango foliage, particularly 
when the leaves are newly emerged. Bacterial Canker is 
caused by Xanthomonas axonopodispv, this disease can 
cause severe damage to mango yields, with losses ranging 
from 10% to 100%. Sooty Mould is caused by the fungus 
Meliola mangiferae. This disease interferes with 
photosynthesis by preventing sunlight from reaching the 
chloroplasts in the leaves, stunting the plant’s growth. Gall 
Midges are the larvae of small flies that feed within the plant 
tissue, causing leaves to develop bulges and affecting the 
plant’s overall health [7]. 

Traditional methods of identifying and managing these 
diseases involve manual inspection of the mango leaves, 
which is time-consuming and inefficient. With the rapid 
advancement of technology, detecting and overcoming 
diseases in mango plants can now be done more easily. 
Farmers can use digital tools to identify the diseases 
affecting their plants and find suitable treatments. Some of 
these diseases can be visually identified on the leaves, 
making image-based classification a viable approach. 

Previous research by Saragih et al. [11] used 
Convolutional Neural Networks (CNNs) to classify mango 
leaf diseases but was limited to three categories: anthracnose, 
black sooty mold, and healthy leaves. This study achieved an 
accuracy of 98%, which is quite high. However, the method 
could only classify three diseases, highlighting the need for 
a more advanced system capable of identifying a broader 
range of diseases. 

Rizvee et al. [12], conducted a classification of 7 common 
disease conditions on mango leaves, these diseases include 
Anthracnose, Powdery Mildew, Bacterial Canker, Cutting 
Weevil, Die Back, Gall Midge, and Sooty Mold. Using 
LeafNet Architecture which compared to other architectures 
such as AlexNet and VGG 16 resulted in better performance 
on evaluation parameters such as average accuracy, 
precision, recall, F1-score, and specificity with accuracy 
results of 98.55%, precision of 99.508%, recall of 99.45%, 
F1-score of 99.47%, and specificity of 99.878%. LeafNet has 
lower computational complexity compared to other model 
architectures such as AlexNet and VGG 16 [12]. This study 
compares 3 architectural models but, has not tested the 
performance comparison when compared with DenseNet 
and the use of Transfer Learning methods on 7 types of 
mango leaf diseases namely Anthracnose, Powdery Mildew, 
Bacterial Canker, Cutting Weevil, Die Back, Gall Midge, 
and Sooty Mold.  

Kulkarni et al. [13] conducted classification research using 
a custom CNN model on 3 types of diseases in mango plants 
Anthracnose, Red rust, and Powdery mildew and Normal 
(healthy), with a total dataset of 980 images. For evaluation, 
confusion matrix, accuracy, precision, recall, and F1-score 
are used. The result of the research using this custom CNN 
is an accuracy of 90.36%.  

Rajbongshi et al. [14] conducted research using the CNN 
DenseNet201 model with transfer learning to classify 

anthracnose, gall machi, powdery mildew, red rust, and 
healthy with an accuracy of 98%. This DenseNet model 
obtained the best results compared with other models, 
namely InceptionResNetV2, InceptionV3, ResNet50, 
ResNet152V2, and Xception with transfer learning which 
compared performance in classifying mango leaf diseases. 
The results of this study show satisfactory results for 
classification models using transfer learning methods. 

Computer Vision, a field of artificial intelligence (AI), 
refers to the ability of computers and systems to interpret and 
make decisions based on visual inputs such as photos and 
videos [15]. It is developing rapidly and is often used in 
various fields for image processing [16]. The CNN method 
is one of the most widely used Deep Learning methods, in 
Computer Vision systems for image classification, due to its 
ability to provide good results with low computational 
complexity [12]. Deep Learning, a subset of machine 
learning, involves algorithms that learn from data through 
multiple layers of processing [17]. CNNs, inspired by 
biological neural networks, connect multiple processing 
layers using convolution operations, making them effective 
for image classification tasks [18]. In classifying images, 
CNN architecture namely DenseNet can be used, which is a 
collection of layers that are tightly netted between CNNs for 
classification [19].  

Transfer Learning, a method where a pre-trained model on 
one problem is used for another problem, allows for deep 
learning training that achieves high accuracy even with a 
small number of samples [20]. Previous studies have shown 
that DenseNet, combined with Transfer Learning, can 
achieve high accuracy in classifying mango leaf diseases. 

In maximizing the performance of the model, the Transfer 
Learning method, image preprocessing techniques, and 
optimizer can be used to maximize the accuracy performance 
of the DenseNet model. Image processing techniques are 
applied at the initial stage (pre-processing) and data 
augmentation, namely using the digital image processing 
method Contrast Limited Adaptive Histogram Equalization 
(CLAHE) before training to improve model performance for 
better accuracy results.  

CLAHE (Contrast Limited Adaptive Histogram 
Equalization) is a technique to improve the quality of digital 
images by increasing the contrast of small tiles, and then 
recombining them by removing artificial boundaries 
between tiles.  With CLAHE, image details become clearer 
and image noise is reduced, making the image easier to 
analyze [21].  

The Stochastic Gradient Descent (SGD) optimizer is used 
in this research to optimize model performance. Stochastic 
Gradient Descent (SGD) is an optimizer whose algorithm is 
based on gradients. SGD is recognized as a fast algorithm for 
optimization because SGD does not perform calculations on 
all given data but rather SGD takes one piece of data and 
performs calculations for that data, then the gradient value 
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will be updated using a learning rate, and the value update 
process lasts until the value reaches the lowest point [22].  

This research aims to improve the performance of the CNN 
model for mango leaf disease classification by integrating 
these methods into the DenseNet architecture. 

 
II. RESEARCH METHODS 

The research methodology is structured into several key 
stages: data collection, data preprocessing, model selection, 
model training, and model evaluation. Each stage is crucial 
for ensuring the accuracy and reliability of the model in 
classifying mango leaf diseases. Figure 1 shows the research 
stages. 

  
Figure 1. Research Stages 
 

The following is an explanation of the research stages 
shown in Figure 1: 

1. Data Collection 
The dataset used in this research consists of a collection 

of mango leaf images that have been labeled for the 
classification of seven mango leaf diseases and one healthy 
leaf category. The labeled datasets were obtained from 
secondary sources, specifically from a previous study 
conducted by Ahmed et al. [7] with the title MangoLeafBD: 
A Comprehensive Image Dataset to Classify Diseased and 
Healthy Mango Leaves. 

This study includes a dataset of 4000 images of mango 
leaves, each labeled according to the type of disease or health 
condition. The dataset is balanced, with an equal number of 
images—500 for each category. The categories include 
Anthracnose, Powdery Mildew, Bacterial Canker, Cutting 
Weevil, Die Back, Gall Midge, Sooty Mold, and Healthy. 
These images were obtained from 4 mango plantations in 
Bangladesh. Although the leaf images were obtained from 
mango leaf diseases in Bangladesh, these diseases are 
common to mango leaves in many countries.  

The dataset from this previous study can be retrieved 
from Mendeley Data [23] from the 4000 images, 1800 of 

these images are whole leaf photos while the rest are the 
result of zooming and rotating. The image size is 240x320 
pixels with RGB color and is in PNG image format. Images 
are taken using a mobile device camera and individually each 
leaf is taken on a white background. The dataset size for 
these images is 103 MB. This dataset is used for training the 
model of the DenseNet architecture. Figure 2 shows some of 
the dataset images of each class. 

Figure 2. Images of Anthracnose, Powdery Mildew, Bacterial Canker, 
Cutting Weevil, Die Back, Gall Midge, Sooty Mould and Healthy 

2. Data Pre-processing 
Dataset augmentation is a strategy that allows a 

significant increase of diversity of existing data in training 
the developed model, without having to collect new data 
[26].  

In the dataset provided by Mendeley Data [23], image 
augmentation has already been applied to 1,800 whole leaf 
images, which resulted in an additional 2,200 images 
through zooming and rotating. Thus, the final total number 
of images after the augmentation process is 4,000. 

Then, the stage of pre-processing the dataset is to perform 
image enhancement in the form of Contrast Limited 
Adaptive Histogram Equalization (CLAHE), which is done 
at the beginning for all images to increase the detail in 
damaged or low-quality images because it can disguise 
existing information [24].  

 The Contrast Limited Adaptive Histogram Equalization 
(CLAHE) method will improve the local contrast of the 
image by giving a boundary value to the histogram. This 
limit value is called the clip limit which states the maximum 
height limit of a histogram. The clip limit of a histogram can 
be defined by (1) [25]:  

𝛽𝛽 = 𝛭𝛭
𝛮𝛮
�1 + 𝛼𝛼

100
(𝑠𝑠 −  1)� × 100% (1) 

Where M denotes the region size, N the grayscale value 
(256), and α the clip factor (the addition of a histogram limit 
that is between 0-100) [25]. The next pre-processing stage is 
to change the entire dataset size to 227x227.  

To improve the accuracy and robustness, augmentation 
will be undertaken. The techniques of augmentation that are 
implemented is geometric transformation such as random 
rotation and flipping both vertically and horizontally. This 
transformation is implemented using the Keras layers 
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library. The Random Rotation layer randomly rotates the 
input image, while the Random Flip Horizontal and Vertical 
layer randomly flips the input images horizontally and 
vertically. During this augmentation process no images is 
added to the dataset. Augmentations are applied to images 
when drawing from a batch, creating stacked variations. 
Each batch will feature slightly different augmented images 
due to the randomness involved in their application. The 
image augmentation creates random variations of images 
processed during training in each epoch, without adding any 
images to the dataset.  

Then, image normalization is applied to the dataset. 
Normalizing the image so that the image pixel value is in the 
range of 0 - 1. Before the normalization, the input image 
pixel range of values is 0 to 255. To change the pixel value 
to the range of 0 – 1, the input image is multiplied by 1/255. 
In data normalization, the pixel value from a range of 0 - 255 
is changed to a range of 0 – 1. By standardizing the values in 
the images to a range between 0 and 1, the CNN model can 
more effectively identify important features. This is essential 
because it ensures that the model can process images 
consistently [11]. Pre-processing is done on the model to 
improve the accuracy of the Deep Learning model. 
3. Model Selection 

In this Deep Learning classification model, the 
architecture used in classifying diseases in mango leaf is 
DenseNet121.  
4. Model Training 

The dataset is divided as follows: 80% for training, 10% 
for validation, and 10% for testing. This means that 3200 
images are used for training, 400 images for testing, and 400 
images for validation out of a total of 4000 images. Each 
class has a balanced class of images, with 400 for training, 
50 for validation, and 50 for testing. The image size is 
227x277 and the batch size is 32. In addition, a learning rate 
scheduler is also used to organize learning on the deep 
learning model at a certain learning rate value. The optimizer 
used for the model is Stochastic Gradient Descent (SGD) 
with a learning rate value of 0.001, Sparse categorical cross-
entropy is applied because of the imbalance datasets, as it 
considers the true probability distribution of the classes. This 
ensures that the model is penalized for misclassifying 
minority classes, which can improve its performance. An 
epoch value of 250 is applied during the training process. 

The model will employ transfer learning during its deep 
learning training process. This process consists of five 
stages: first, a pre-trained network from the DenseNet 
architecture is imported. Next, several convolutional layers 
are frozen to preserve essential information. The 
classification layer, which was trained on 1,000 ImageNet 
datasets, is then removed. Following this, a new 
classification layer is added to identify diseases in mango 
plant leaves. Finally, data augmentation and optimization 
techniques are applied to enhance the accuracy of the model's 

training results. Figure 3 shows the stages of the transfer 
learning process. 

Figure 3. Stages of the transfer learning process 

5. Model Evaluation 
Model evaluation in the form of performance metrics 

namely accuracy, precision, recall, F1-score, and loss are 
used to measure model performance in this research.  

Accuracy, precision, recall, and F1-score are calculated 
for each class in the DenseNet model. Equations (2), (3), (4), 
and (5) represent Accuracy, Precision, Recall and F1-score 
respectively [27]. 

Accuracy = � 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇+𝑇𝑇𝑇𝑇

� × 100% (2) 

Precision = � 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

� ×  100% (3) 

Recall = � 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

� ×  100% (4) 

F1-score = 2 ×  �𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃× 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅

� ×  100% (5) 

Confusion Matrix was created to visualize the 
classification result of the DenseNet model. Confusion 
matrix is a table that states the classification of the number 
of correct test data and the number of incorrect test data. It is 
a useful tool for evaluating the performance of a 
classification algorithm. As an example, the concept of 
confusion matrix for binary classification is depicted in 
Table 1 [28]. 

The model loss and accuracy graphs are displayed to 
visualize how the model performance changes during 
training. The final epoch accuracy and loss, including the 
final epoch accuracy, final epoch val_accuracy, final epoch 
loss, and final epoch val_loss, are presented in Table 4 and 
Table 5.  

TABLE 1 
CONFUSION MATRIX 

 Prediction Class 
 1 0 

Actual Class 1 TP FN 
0 FP TN 
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III. RESULTS AND DISCUSSION 
A. RESULTS 

The DenseNet model using CLAHE demonstrated 
exceptional performance in classifying mango leaf diseases, 
achieving an overall accuracy of 99.5%. This high level of 
accuracy indicates the model’s effectiveness in 
distinguishing between different disease categories and 
healthy leaves. The performance metrics for each class, 
including accuracy, precision, recall, and F1-score, are 
detailed in Table 2. 

TABLE 2 
PERFORMANCE EVALUATION METRICS FOR EACH CLASS USING 

DENSENET MODEL WITH CLAHE 

Leaf Disease Accuracy Precision Recall F1-score 
Anthracnose 99.5 % 100 % 100 % 100 % 

Bacterial 
Canker 

99.5 % 100 % 98 % 99 % 

Cutting 
Weevil 

99.5 % 100 % 100 % 100 % 

Die Back 99.5 % 100 % 100 % 100 % 
Gall Midge 99.5 % 100 % 100 % 100 % 

Healthy 99.5 % 98 % 100 % 99 % 
Powdery 
Mildew 

99.5 % 100 % 100 % 100  % 

Sooty Mould 99.5 % 98 % 98 % 98 % 
 
Table 2 shows the performance evaluation metrics of the 

DenseNet model with CLAHE for the Anthracnose, 
Bacterial Canker, Cutting Weevil, Die Back, Gall Midge, 
Healthy, Powdery Mildew, Sooty Mould classes. The model 
achieved an accuracy of 99.5% across all classes. Precision 
values for the classes ranged from 98% to 100%. 
Anthracnose, Bacterial Canker, Cutting Weevil, Die Back, 
Gall Midge, and Powdery Mildew achieve the highest 
precision results at 100%. Recall values ranged from 98% to 
100%. Anthracnose, Cutting Weevil, Die Back, Gall Midge, 
Healthy, and Powdery Mildew obtain the highest recall 
values at 100%. The F1-score, which is the harmonic mean 
of precision and recall, ranged from 98% to 100%. 
Anthracnose, Cutting Weevil, Die Back, Gall Midge, and 
Powdery Mildew demonstrate the highest F1-score results at 
100%. To compare the improvement using CLAHE, the 
results before using CLAHE can be seen in Table 3. 

TABLE 3 
PERFORMANCE EVALUATION METRICS FOR EACH CLASS USING 

DENSENET MODEL WITHOUT CLAHE 

Leaf Disease Accuracy Precision Recall F1-score 
Anthracnose 99.25 % 100 % 100 % 100 % 

Bacterial 
Canker 

99.25 % 100 % 100 % 100 % 

Cutting 
Weevil 

99.25 % 100 % 100 % 100 % 

Die Back 99.25 % 100 % 100 % 100 % 
Gall Midge 99.25 % 100 % 96 % 98 % 

Healthy 99.25 % 98 % 100 % 99 % 
Powdery 
Mildew 

99.25 % 98 % 100 % 99 % 

Sooty Mould 99.25 % 98 % 98 % 98 % 

Table 3 shows the performance evaluation metrics for the 
DenseNet model without CLAHE for the same class. The 
model achieved lower accuracy of 99.25% for all classes. 
Precision, Recall, and F1-score values are different for some 
classes. Precision values ranged from 98% to 100%. The 
highest precision result of 100% was achieved by 
Anthracnose, Bacterial Canker, Cutting Weevil, Die back 
and Gall Midge. Recall values for the classes ranged from 
96% to 100% with the highest recall results achieved by 
Anthracnose, Bacterial Canker, Cutting Weevil, Die back, 
Healthy and Powdery Mildew. F1-score is ranged between 
98% to 100% with the highest results achieved by 
Anthracnose, Bacterial Canker, Cutting Weevil, and Die 
back.  

The results show better accuracy when using CLAHE as 
shown in the Table 2 with the accuracy of 99.5 % which is 
higher compared to not using CLAHE with the accuracy of 
99.25 %. The model that is implemented using CLAHE in 
the preprocessing stage achieves higher metrics. The 
performance metrics that are measured in the experiment are 
Precision, Recall, and F1-score. The higher scores are 
achieved especially for Anthracnose, Cutting Weevil, Die 
Back, Gall Midge, and Powdery Mildew. 

The confusion matrix provides a detailed breakdown of 
the model’s performance for each class for the DenseNet 
Model with CLAHE in Figure 4 and without CLAHE in 
Figure 5. It shows the number of correct and incorrect 
predictions, allowing for a deeper understanding of the 
model’s strengths and weaknesses. 

Figure 4. Confusion Matrix of DenseNet Model with CLAHE 

Figure 4 displays the confusion matrix results for each 
class classified using the DenseNet architecture with 
CLAHE. The confusion matrix indicates the model's 
prediction accuracy, showing the number of classes 
predicted correctly or incorrectly. Figure 5 presents the 
evaluation results for each class for the model without 
CLAHE. The confusion matrix for Figure 5 illustrates the 
number of classes predicted correctly or incorrectly. In 
comparison to Figure 4, the results in Figure 5 show lower 
correctly predicted classes in especially in Gall Midge. 
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Figure 5. Confusion Matrix of DenseNet Model without CLAHE 

The training and validation accuracy and loss graphs 
illustrate the model’s learning process over the epochs for 
Densenet with CLAHE in Figure 6 and Densenet without 
CLAHE in Figure 7. The graphs show that the model’s 
accuracy increased steadily while the loss decreased, 
indicating effective learning and convergence.  

Figure 6. Accuracy and Loss Progress Chart of DenseNet Model With 
CLAHE 

Figure 7. Accuracy and Loss Progress Chart of DenseNet Model 
Without CLAHE 

Figures 6 and 7 display the training process and accuracy 
and loss of the results of training and validation of datasets. 
The DenseNet architecture model is slowly changing 
accuracy and loss values. The accuracy obtained is 
increasing and the loss obtained is getting smaller. The 
changes that occur are quite stable for the accuracy and loss 
values obtained. In comparison, the results in Figure 7 have 
wider gap in the graph than in Figure 6 for both the training 
and validation accuracy and the training and validation loss.  

Tables 4 and 5 present the final values of accuracy and loss 
when training is completed at the last epoch. Table 4 displays 
the results with CLAHE and Table 5 shows results without 
CLAHE. 

TABLE 4 
ACCURACY AND LOSS OF THE MODEL WITH CLAHE 

Architecture Final 
epoch 

accuracy 

Final epoch 
val_accuracy 

Final 
epoch 
loss 

Final 
epoch 

val_loss 
DenseNet121 99.72 % 99.50 % 0.0276 0.0360 

 
TABLE 5 

ACCURACY AND LOSS OF THE MODEL WITHOUT CLAHE 

Architecture Final 
epoch 

accuracy 

Final epoch 
val_accuracy 

Final 
epoch 
loss 

Final 
epoch 

val_loss 
DenseNet121 99.62 % 99.25 % 0.0298 0.0438 

 
Table 4 outlines the results of the DenseNet model for 

accuracy and loss at the end of the epoch. The final epoch 
training accuracy was 99.72%, demonstrating that the model 
learned effectively from the training data. The final epoch 
validation accuracy was 99.50%, indicating that the model 
performed well on unseen data. The final epoch training loss 
was 0.0276, showing that the model minimized errors during 
training. The final epoch validation loss was 0.0360, 
indicating that the model maintained low error rates on 
validation data. In comparison, Table 5 shows the final epoch 
accuracy of 99.62%, final epoch validation accuracy of 
99.25%, final epoch loss of 0.0298, and final epoch 
validation loss of 0.0438. Indicating the Densenet model 
with CLAHE achieved higher performance results.  

In addition to using CLAHE, this research also utilizes 
Augmentation to enhance the robustness and accuracy of the 
model. Data Augmentation is employed to increase data 
variation, involving random horizontal and vertical flipping, 
as well as random rotation. Table 6 presents the performance 
evaluation metrics, highlighting the model's results when 
using CLAHE without Data Augmentation. 

 
TABLE 6 

PERFORMANCE EVALUATION METRICS FOR EACH CLASS USING 
DENSENET MODEL WITH CLAHE AND WITHOUT AUGMENTATION 

Leaf Disease Accuracy Precision Recall F1-score 
Anthracnose 99 % 100 % 98 % 99 % 

Bacterial 
Canker 

99 % 100 % 100 % 100 % 

Cutting 
Weevil 

99 % 100 % 100 % 100 % 

Die Back 99 % 100 % 100 % 99 % 
Gall Midge 99 % 98 % 100 % 99 % 

Healthy 99 % 98 % 100 % 99 % 
Powdery 
Mildew 

99 % 98 % 98 % 98  % 

Sooty Mould 99 % 98 % 96 % 97 % 
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Table 6 model using CLAHE and without Augmentation 
shows lower results compared to Table 2 model with 
CLAHE and Augmentation. Table 6 shows the performance 
evaluation metrics of the DenseNet model with CLAHE 
without Augmentation. The model achieved an accuracy of 
99% across all classes which is lower than using CLAHE 
with Augmentation in Table 2 which achieved 99.5% 
accuracy. Table 6 achieved results of precision values for the 
classes ranged from 98% to 100%. Anthracnose, Bacterial 
Canker, Cutting Weevil, and Die Back achieve the highest 
precision results at 100%. Recall values ranged from 96% to 
100%. Bacterial Canker, Cutting Weevil, Die Back, Gall 
Midge, and Healthy obtain the highest recall values at 100%. 
The F1-score, which is the harmonic mean of precision and 
recall, ranged from 97% to 100%. Bacterial Canker and 
Cutting Weevil demonstrate the highest F1-score results at 
100%. This result shows that data augmentation improves 
the model performance. The augmentation techniques 
enhance the model ability to learn more and generalize new 
data, due to the variation images. 

Figure 8 illustrates the results of training and validation 
accuracy and loss graphs, showcasing when the model is 
using CLAHE and without Augmentation.  

Figure 8. Accuracy and Loss Progress Chart of DenseNet Model with 
CLAHE and Without Augmentation 

The results in Figure 8 indicate a difference in model 
performance when using CLAHE and without 
Augmentation, compared to using CLAHE and 
Augmentation in Figure 6. In Figure 8, there is a noticeable 
gap between the graphs, whereas in Figure 6, the gap is much 
smaller. This suggests that using Augmentation improves the 
model, with a smaller gap indicating better performance in 
terms of robustness and accuracy. Figure 9 shows the 
confusion matrix for the model with CLAHE and without 
Augmentation.  

The DenseNet model presented in Figure 9, which utilizes 
CLAHE without augmentation, shows noticeable differences 
when compared to Figure 4, which employs augmentation. 
This comparison indicates that the use of augmentation 
enhances the model's prediction accuracy, particularly in the 
number of correctly predicted classes. When compared to 
Figure 4, the results in Figure 9 reveal a lower number of 
accurately predicted classes, particularly for Anthracnose, 
Powdery Mildew, and Sooty Mould. This highlights that the 

use of augmentation significantly improves the model's 
robustness and accuracy. 

Figure 9. Confusion Matrix of DenseNet Model Testing Result with 
CLAHE and without Augmentation 

Based on research conducted on the classification of 
diseases in mango leaves using deep learning CNN 
architecture models, the DenseNet model demonstrated 
exceptional performance. With the implementation of 
CLAHE (Contrast Limited Adaptive Histogram 
Equalization) and data augmentation, the DenseNet model 
achieved an impressive accuracy of 99.5%. 

The performance evaluation metrics for the DenseNet 
model across each class showed precision values ranging 
from 98% to 100%, recall values also between 98% and 
100%, and F1-scores in the same range. Additionally, the 
confusion matrix indicated satisfactory results, with a high 
number of correct predictions for each class. 

The accuracy and loss progress graphs for the DenseNet 
architecture model revealed consistent results, showcasing a 
final training accuracy of 99.72% and a validation accuracy 
of 99.50%. The training loss was recorded at 0.0276, while 
the validation loss was 0.0360. 

 
B. DISCUSSION 

The key discussion from the results of this study include:  
1. Comparison With Previous Studies 

The results of this study surpass those of previous 
research. For instance, Rajbongshi et al. achieved an 
accuracy of 98% using the DenseNet architecture with 
transfer learning. This study implemented additional data 
preprocessing steps, such as CLAHE and data augmentation, 
which contributed to the higher accuracy of 99.5%. The 
inclusion of more disease classes (eight compared to five in 
previous studies) also demonstrates the model’s enhanced 
capability to handle a broader range of classifications. 
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2. Impact Of Data Preprocessing and Augmentation 
The use of CLAHE for image preprocessing significantly 

enhanced the detail in the images, making it easier for the 
model to identify disease features. Data augmentation 
techniques, that are used in this study (random rotation, 
vertical and horizontal flipping), increased the diversity of 
the dataset, improving the model’s robustness and accuracy. 
These preprocessing steps were crucial in achieving the high 
performance of the DenseNet model. 
3. Transfer Learning Benefits 

Transfer learning played a vital role in optimizing the 
DenseNet model’s performance. By leveraging a pre-trained 
model, the study was able to achieve high accuracy even with 
a relatively small dataset. Transfer learning allowed the 
model to benefit from prior knowledge, reducing the need for 
extensive training from scratch and improving the model’s 
generalization capabilities. 

4. Limitations And Future Work 
While the DenseNet model achieved high accuracy, there 

are areas for improvement. Future research could focus on 
expanding the dataset to include more images and different 
disease categories to improve the model’s robustness and 
generalizability. Implementing other advanced techniques, 
such as ensemble learning, could also be explored to boost 
classification accuracy. 

 
IV. CONCLUSION 

This study implemented a Convolutional Neural Network 
(CNN) using the DenseNet architecture to classify diseases in 
mango leaves. The research incorporated Contrast Limited 
Adaptive Histogram Equalization (CLAHE) for image 
preprocessing, optimizer, and Transfer Learning was utilized 
to optimize the DenseNet model, resulting in an overall 
accuracy of 99.5%. 

The DenseNet model achieved a remarkable accuracy of 
99.5% in classifying mango leaf diseases. This high level of 
accuracy demonstrates the model’s effectiveness in 
distinguishing between different disease categories and 
healthy leaves. 

The use of CLAHE significantly improved the detail in the 
images, making it easier for the model to identify disease 
features. This preprocessing step was crucial in achieving the 
high performance of the DenseNet model. 

Data augmentation techniques, including random rotation 
and flipping, increased the diversity of the dataset. This 
improvement in dataset variation contributed to the model’s 
robustness and accuracy.  

Leveraging a pre-trained model through Transfer Learning 
allowed the study to achieve high accuracy even with a 
relatively small dataset. Transfer Learning enabled the model 
to benefit from prior knowledge, reducing the need for 
extensive training from scratch and improving the model’s 
generalization capabilities. 

The results of this study surpass those of previous research. 
For instance, Rajbongshi et al. achieved an accuracy of 98% 
using the DenseNet architecture with Transfer Learning. 
However, this study implemented additional data 
preprocessing steps, such as CLAHE and data augmentation, 
which contributed to the higher accuracy of 99.5%. The 
inclusion of more disease classes (eight compared to five in 
previous studies) also demonstrates the model’s enhanced 
capability to handle a broader range of classifications. 

The findings of this study have significant practical 
implications for the agricultural industry, particularly for 
mango farmers. The high accuracy of the DenseNet model in 
classifying mango leaf diseases provides a valuable tool for 
farmers to identify and manage these diseases more 
effectively. By leveraging this technology, farmers can 
improve their crop yield and quality, reducing the economic 
losses associated with disease outbreaks. 

In conclusion, the DenseNet architecture, combined with 
CLAHE preprocessing, optimizer, and Transfer Learning, 
effectively classifies mango leaf diseases with high 
accuracy. The model’s performance metrics, confusion 
matrix, and training and validation graphs all indicate its 
robustness and reliability. This study demonstrates the 
potential of deep learning techniques in agricultural 
applications, providing a valuable tool for farmers to identify 
and manage mango leaf diseases more effectively.  

While the DenseNet model achieved high accuracy, there 
are areas for improvement. Future research could focus on 
expanding the dataset to include more images and different 
disease categories to improve the model’s robustness and 
generalizability. Implementing other advanced techniques, 
such as ensemble learning, could also be explored to boost 
classification accuracy. 
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