The Market Basket Analysis Dengan Algoritma FP Growth

  • Ramadhan Ramadhan istts
Keywords: data mining, association rules, market basket analysis, Apriori, frequent pattern, growth, FP-growth.

Abstract

Data mining merupakan proses analisa data untuk menemukan suatu pola dari kumpulan data. Data mining mampu menganalisa data yang besar menjadi informasi berupa pola yang mempunyai arti bagi pendukung keputusan. Salah satu teknik data mining yang dapat digunakan adalah association data mining atau yang biasa disebut dengan istilah market basket analysis. Market basket didefinisikan sebagai suatu itemset yang dibeli secara bersamaan oleh pelanggan dalam suatu transaksi. Market basket analysis adalah suatu sarana untuk meningkatkan penjualan. Metode ini dimulai dengan mencari sejumlah frequent itemset dan dilanjutkan dengan pembentukan aturan-aturan asosiasi (association rules). Algoritma Apriori dan frequent pattern growth (FP Growth) adalah dua algoritma yang sangat populer untuk menemukan sejumlah frequent itemset dari data-data transaksi yang tersimpan dalam basis data. Dalam penelitian ini algoritma frequent pattern growth (FP Growth) digunakan untuk menemukan sejumlah aturan asosiasi dari basis data transaksi penjualan di Swalayan KSU Sumber Makmur (Trenggalek). Dari hasil pengolahan data didapatkan pola pembelian paling kuat berupa jika membeli pasta gigi maka dimungkinkan juga akan membeli sabun dan jika membeli shampo juga akan membeli sabun dengan tingkat keyakinan (confidence) 63 persen dan 62 persen.

References

data mining, association rules, market basket analysis, Apriori, frequent pattern, growth, FP-growth.
Published
2020-10-31