Predictive Buyer Behavior Model as Customer Retention Optimization Strategy in E-commerce
DOI:
https://doi.org/10.52985/insyst.v6i1.379Keywords:
Customer Retention Optimization Strategy, E-Commerce, Predictive Behavior Model, Random ForestAbstract
Lazada is one of the rapidly growing E-commerce platforms in this digital era. One of the main challenges faced by Lazada is customer retention, where customers make purchases once or a few times before switching to other platforms. Therefore, it is important to understand buyer behavior in E-commerce through customer prediction to identify factors influencing retention. This study employs the Random Forest (RF) method to analyze Lazada customer data and formulate more effective marketing strategies. The analysis is conducted by loading preprocessed datasets into the KNIME workflow and utilizing various nodes and algorithms available in KNIME to build and evaluate predictive models. The Random Forest model is trained multiple times to achieve the highest Accuracy rate, which is 72.472%, with a fairly high level of agreement and a balanced trade-off between recall and precision. Additionally, this model successfully predicts that customers purchasing electronic equipment are potentially churning at a rate of 3.85%. Subsequently, customer strategy analysis for customer retention optimization in the E-commerce industry is conducted through data visualization using Tableau. Predictive analysis of customer behavior serves as a strong foundation for formulating effective retention strategies in the E-commerce industry. With this approach, Lazada can enhance customer experience and ensure sustainability in facing the increasingly fierce competition in the digital market.
References
M. A. A. Hakim, “Analysis Of The Influence Of Content Personalisation On Consumer Purchasing Decisions In The E-commerce Industry,” J. MIRTE, vol. 2, no. 2, pp. 10–11, 2023.
M. I. Eid, “Determinants of E-commerce customer satisfaction, trust, and loyalty in Saudi Arabia,” J. Electron. Commer. Res., vol. 12, no. 1, pp. 78–93, 2011.
M. Harahap, Y. Lubis, and Z. Situmorang, “Data Science bidang Pemasaran : Analisis Prilaku Pelanggan,” Data Sci. Indonesai, 2021.
N. F. Sahamony, T. Terttiaavini, and H. Rianto, “Analisis Perbandingan Kinerja Model Machine Learning untuk Memprediksi Risiko Stunting pada Pertumbuhan Anak,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 2, pp. 413–422, 2024, [Online]. Available: https://journal.irpi.or.id/index.php/malcom/article/view/1210
I. P. Putri, T. Terttiaavini, and N. Arminarahmah, “Analisis Perbandingan Algoritma Machine Learning untuk Prediksi Stunting pada Anak,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 1, pp. 257–265, 2024, doi: 10.57152/malcom.v4i1.1078.
N. Istiqamah and M. Rijal, “Klasifikasi Ulasan Konsumen Menggunakan Random Forest dan SMOTE,” J. Syst. Comput. Eng., vol. 5, no. 1, pp. 66–77, 2024, doi: 10.61628/jsce.v5i1.1061.
T. N. Muthmainnah and A. Voutama, “Pendekatan Data Science Untuk Menemukan Customer Churn Pada Perusahaan Fashion Dengan Metode Machine Learning,” J. Teknol. Sist. Inf. dan Sist. Komput. TGD, vol. 6, no. 2, pp. 463–471, 2023, [Online]. Available: https://ojs.trigunadharma.ac.id/index.php/jsk/index
W. Fajrin Mustafa, S. Hidayat, and D. Hatta Fudholi, “Prediksi Retensi Pengguna Baru Shopee Menggunakan Machine Learning,” J. Media Inform. Budidarma , vol. 8, no. 1, pp. 612–623, 2024, doi: 10.30865/mib.v8i1.7074.
N. F. Sahamony, T. Terttiaavini, and H. Rianto, “Analysis of Performance Comparison of Machine Learning Models for Predicting Stunting Risk in Children ’ s Growth,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. April, pp. 413–422, 2024.
A. A. S. Bratan, H. Taan, and Y. L. Ismail, “Economics and Digital Business Review Meningkatkan Retensi Pelanggan Paket Data Internet Telkomsel di Kota Gorontalo melalui Strategi Customer Relationship Management (CRM ),” Econ. Digit. Bus. Rev., vol. 5, no. 1, pp. 47–56, 2024.
N. Suryana, “Prediksi Churn Dan Segmentasi Pelanggan TV Berlangganan (Studi Kasus Transvision Jawa Barat),” J. TEDC, vol. 11, no. 2, pp. 185–191, 2019, [Online]. Available: https://ejournal.poltektedc.ac.id/index.php/tedc/article/view/77
A. S. Wibowo, “Analisis Churn Nasabah Bank Dengan Pendekatan Machine Learning dan Pengelompokan Profil Nasabah dengan Pendekatan Clustering,” Konstr. Publ. Ilmu Tek. Perenc. Tata Ruang dan Tek. Sipil, vol. 2, no. 1, pp. 30–41, 2024, doi: https://doi.org/10.61132/konstruksi.v2i1.43.
A. Primajaya et al., “Random Forest Algorithm for Prediction of Precipitation,” Indones. J. Artif. Intell. Data Min., vol. 1, no. 1, pp. 27–31, 2018.
D. Marcelina, A. Kurnia, and T. Terttiaavini, “Analisis Klaster Kinerja Usaha Kecil dan Menengah Menggunakan Algoritma K-Means Clustering,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 2, pp. 293–301, 2023, doi: 10.57152/malcom.v3i2.952.
KNIME Official, “KNIME Analytics Platform,” 2023. https://www.knime.com/knime-analytics-platform
J. Kurniawan et al., Analisa dan Visualisasi data, 2023rd ed. Bandung: Widina Bhakti Persada Bandung, 2023.
M. Ariandi et al., “Analisis Visualisasi Data Kecamatan Kertapati menggunakan,” J. Jupiter, vol. 14, no. 2, pp. 366–373, 2022.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 INSYST: Journal of Intelligent System and Computation
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.