Implementation of DenseNet Architecture With Transfer Learning to Classify Mango Leaf Diseases

Authors

  • Marsha Alexis Likorawung Universitas Ciputra Surabaya
  • Daniel Martomanggolo Wonohadidjojo Universitas Ciputra Surabaya

DOI:

https://doi.org/10.52985/insyst.v6i2.401

Keywords:

Convolutional Neural Network, DenseNet Architecture, Mango Leaf Disease, Transfer Learning

Abstract

Mango plants (Mangifera indica) are a significant export commodity in the horticultural industry, offering numerous nutritional and economic benefits. They are rich in essential micronutrients, vitamins, and phytochemicals, contributing to their high demand globally. However, mango plants are susceptible to various diseases that can severely impact their yield and quality. These diseases pose a challenge to mango farmers, many of whom struggle to identify and treat them effectively, leading to potential harvest failures. This study aims to address this challenge by implementing a Deep Learning approach to classify diseases in mango leaves. Specifically, the research utilizes a Convolutional Neural Network (CNN) with DenseNet architecture, known for its efficiency in image classification tasks. The study incorporates Contrast Limited Adaptive Histogram Equalization (CLAHE) for image preprocessing to enhance detail and improve the model’s performance. Transfer Learning is utilized to optimize the DenseNet model, leveraging a pre-trained model to achieve high accuracy even with a relatively small dataset. The dataset used in this research comprises 4000 labeled images of mango leaves, covering seven disease categories and healthy leaves. These images include common diseases such as Anthracnose, Dieback, Powdery Mildew, Red Rust, Cutting Weevil, Bacterial Canker, and Sooty Mould. The DenseNet model achieved an overall accuracy of 99.5% in classifying mango leaf diseases.

References

S. Fauzia, Hardiansyah, and Mahrudin, “Keanekaragaman Jenis Mangifera Di Bantaran Sungai Desa Beringin Kencana Kecamatan Tabunganen Kalimantan Selatan,” Oryza : Jurnal Pendidikan Biologi , vol. 10, no. 2, 2021.

C. Aura, S. Widayanti, and N. H. I. Fitriana, “Export Position of Indonesian Mango Commodities in the International Market (Case Study in Seven Destination Countries),” Buletin Penelitian Sosial Ekonomi Pertanian Fakultas Pertanian Universitas Haluoleo, vol. 25, no. 1, 2023, doi: 10.37149/bpsosek.v25i1.470.

E. Mulyani, “PENETAPAN KADAR VITAMIN C PADA BUAH MANGGA ARUMANIS (Mangifera indica L) DAN BUAH MANGGA MACANG (Mangifera foetida Lour) DENGAN METODE SPEKTROFOTOMETRI UV-VIS,” Jurnal Ilmiah Pharmacy, vol. 8, no. 1, 2021, doi: 10.52161/jiphar.v8i1.282.

P. Sasu, “[Mini Review] Role of Mango in Immune System,” Qeios, 2024, doi: 10.32388/qe6au0.

E. M. Yahia, J. de J. Ornelas-Paz, J. K. Brecht, P. García-Solís, and M. E. Maldonado Celis, “The contribution of mango fruit (Mangifera indica L.) to human nutrition and health,” 2023. doi: 10.1016/j.arabjc.2023.104860.

P. A. Widjaja and J. R. Leonesta, “Determining Mango Plant Types Using YOLOv4,” Formosa Journal of Science and Technology, vol. 1, no. 8, 2022, doi: 10.55927/fjst.v1i8.2155.

S. I. Ahmed et al., “MangoLeafBD: A comprehensive image dataset to classify diseased and healthy mango leaves,” Data Brief, vol. 47, 2023, doi: 10.1016/j.dib.2023.108941.

Mariana Mariana, Elly Liestiany, Fahmi Rizali Cholis, and Nazwan Syahbani Hasbi, “PENYAKIT ANTRAKNOSA CABAI OLEH Colletotrichum sp. DI LAHAN RAWA KALIMANTAN SELATAN,” Jurnal Ilmu-Ilmu Pertanian Indonesia, vol. 23, no. 1, pp. 30–36, Jun. 2021.

“Oidium mangiferae (powdery mildew of mango),” PlantwisePlus Knowledge Bank, vol. Species Pages, 2022, doi: 10.1079/pwkb.species.37174.

N. D. J. Patrice et al., “CHARACTERIZATION OF RED RUST DISEASE CAUSED BY CEPHALEUROS VIRESCENS KUNZE ON CASHEW NUTIN THESUDANO-SAHELIAN ECOLOGICAL ZONE OF CAMEROON,” Pakistan Journal of Phytopathology, vol. 33, no. 1, 2021, doi: 10.33866/PHYTOPATHOL.033.01.0634.

V. R. Saragih, Nur Azizi, Alfattah Atalarais, Reza Ananda Hatmi, and Hermawan Syahputra, “Detection of mango leaf disease using the convolution neural network method,” TEKNOSAINS : Jurnal Sains, Teknologi dan Informatika, vol. 11, no. 1, 2024, doi: 10.37373/tekno.v11i1.639.

R. A. Rizvee et al., “LeafNet: A proficient convolutional neural network for detecting seven prominent mango leaf diseases,” J Agric Food Res, vol. 14, 2023, doi: 10.1016/j.jafr.2023.100787.

Dr. S. B. Kulkarni and J. Keerthi, “Mango Leaf Disease Detection Using Deep Learning,” Int J Res Appl Sci Eng Technol, vol. 11, no. 8, 2023, doi: 10.22214/ijraset.2023.55325.

A. Rajbongshi, T. Khan, M. M. Rahman, A. Pramanik, S. M. T. Siddiquee, and N. R. Chakraborty, “Recognition of mango leaf disease using convolutional neural network models: A transfer learning approach,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 23, no. 3, 2021, doi: 10.11591/ijeecs.v23.i3.pp1681-1688.

L. Zeng, “The Development of Image Classification Models Based on Computer Vision,” Highlights in Science, Engineering and Technology, vol. 34, 2023, doi: 10.54097/hset.v34i.5505.

J. Subur, Suryadhi, M. Taufiqurrohman, and N. Reza Al Hafizh, “Pemanfaatan Teknologi Computer Vision untuk Deteksi Ukuran Ikan Bandeng dalam Membantu Proses Sortir Ikan,” CYCLOTRON, vol. 7, no. 01, 2024, doi: 10.30651/cl.v7i01.21239.

R. A. Tilasefana and R. E. Putra, “Penerapan Metode Deep Learning Menggunakan Algoritma CNN Dengan Arsitektur VGG NET Untuk Pengenalan Cuaca,” Journal of Informatics and Computer Science (JINACS), vol. 05, no. 1, 2023.

I. Wulandari, H. Yasin, and T. Widiharih, “KLASIFIKASI CITRA DIGITAL BUMBU DAN REMPAH DENGAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK (CNN),” Jurnal Gaussian, vol. 9, no. 3, 2020, doi: 10.14710/j.gauss.v9i3.27416.

G. Wang, Z. Guo, X. Wan, and X. Zheng, “Study on Image Classification Algorithm Based on Improved DenseNet,” in Journal of Physics: Conference Series, 2021. doi: 10.1088/1742-6596/1952/2/022011.

R. Rismiyati and A. Luthfiarta, “VGG16 Transfer Learning Architecture for Salak Fruit Quality Classification,” Telematika, vol. 18, no. 1, 2021, doi: 10.31315/telematika.v18i1.4025.

S. Nuraisha and S. Handayani, “ANALISIS IMPLEMENTASI CONTRAST LIMITED ADAPTIVE HISTOGRAM EQUALIZATION (CLAHE) UNTUK DETEKSI CITRA SIDIK JARI TIRUAN,” Djtechno Jurnal Teknologi Informasi, vol. 2, no. 1, 2021, doi: 10.46576/djtechno.v2i1.1255.

A. T. N. Hartono and H. D. Purnomo, “Pengembangan Stochastic Gradient Descent dengan Penambahan Variabel Tetap,” Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), vol. 7, no. 3, 2023, doi: 10.35870/jtik.v7i3.840.

A. Sawkat, M. Ibrahim, S. I. Ahmed, M. Nadim, M. R. Mizanur, M. M. Shejunti, and T. Jabid, "MangoLeafBD Dataset," Mendeley Data, vol. V1, 2022. doi: 10.17632/hxsnvwty3r.1

T. Ramadhan, F. A. Wara, and I. D. Reja, “Analisis Perbaikan Citra Digital Menggunakan Metode Contrast Stretching,” Jurnal in Create (Inovasi dan Kreasi dalam Teknologi Informasi), vol. 9, no. 1, 2023.

Nurhidayah, B. Abdul Samad, and B. Abdullah, “Perbandingan Metode Contrast Enhancement pada Citra CT-Scan Kanker Paru-paru,” Gravitasi, vol. 19, no. 2, 2020, doi: 10.22487/gravitasi.v19i2.15360.

T. B. Sasongko, H. Haryoko, and A. Amrullah, “Analisis Efek Augmentasi Dataset dan Fine Tune pada Algoritma Pre-Trained Convolutional Neural Network (CNN),” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 10, no. 4, 2023, doi: 10.25126/jtiik.20241046583.

A. Majumder, A. Rajbongshi, M. M. Rahman, and A. A. Biswas, “Local Freshwater Fish Recognition Using Different CNN Architectures with Transfer Learning,” Int J Adv Sci Eng Inf Technol, vol. 11, no. 3, 2021, doi: 10.18517/ijaseit.11.3.14134.

D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” Jurnal Sains Komputer & Informatika (J-SAKTI), vol. 5, no. 2, 2021.

Downloads

Additional Files

Published

2024-10-31

How to Cite

[1]
M. A. Likorawung and D. M. Wonohadidjojo, “Implementation of DenseNet Architecture With Transfer Learning to Classify Mango Leaf Diseases”, INSYST, vol. 6, no. 2, pp. 78–86, Oct. 2024.